My Library

University LibraryCatalogue

     
Limit search to items available for borrowing or consultation
Result Page: Previous Next
 
Look for full text

Search Discovery

Search Trove

Add record to RefWorks

PRINTED BOOKS
Author Katz, Jonathan, 1974- author.

Title Introduction to modern cryptography / Jonathan Katz, University of Maryland, College Park, MD, USA, Yehuda Lindell, Bar-llan University, Ramat Gan, Israel.

Published Boca Raton : CRC Press/Taylor & Francis, [2015]
©2015.

Copies

Location Call No. Status
 UniM Store ERC  005.82 KATZ    DUE 08-01-21
Edition Second edition.
Physical description xx, 583 pages : illustrations ; 25 cm.
Series Chapman & Hall/CRC cryptography and network security.
Chapman & Hall/CRC cryptography and network security.
Bibliography Includes bibliographical references and index.
Contents Machine generated contents note: 1.Introduction -- 1.1.Cryptography and Modern Cryptography -- 1.2.The Setting of Private-Key Encryption -- 1.3.Historical Ciphers and Their Cryptanalysis -- 1.4.Principles of Modern Cryptography -- 1.4.1.Principle 1 [ -] Formal Definitions -- 1.4.2.Principle 2 [ -] Precise Assumptions -- 1.4.3.Principle 3 [ -] Proofs of Security -- 1.4.4.Provable Security and Real-World Security -- References and Additional Reading -- Exercises -- 2.Perfectly Secret Encryption -- 2.1.Definitions -- 2.2.The One-Time Pad -- 2.3.Limitations of Perfect Secrecy -- 2.4.Shannon's Theorem -- References and Additional Reading -- Exercises -- 3.Private-Key Encryption -- 3.1.Computational Security -- 3.1.1.The Concrete Approach -- 3.1.2.The Asymptotic Approach -- 3.2.Defining Computationally Secure Encryption -- 3.2.1.The Basic Definition of Security -- 3.2.2.Semantic Security -- 3.3.Constructing Secure Encryption Schemes --
Contents note continued: 3.3.1.Pseudorandom Generators and Stream Ciphers -- 3.3.2.Proofs by Reduction -- 3.3.3.A Secure Fixed-Length Encryption Scheme -- 3.4.Stronger Security Notions -- 3.4.1.Security for Multiple Encryption -- 3.4.2.Chosen-Plaintext Attacks and CPA-Security -- 3.5.Constructing CPA-Secure Encryption Schemes -- 3.5.1.Pseudorandom Functions and Block Ciphers -- 3.5.2.CPA-Secure Encryption from Pseudorandom Functions -- 3.6.Modes of Operation -- 3.6.1.Stream-Cipher Modes of Operation -- 3.6.2.Block-Cipher Modes of Operation -- 3.7.Chosen-Ciphertext Attacks -- 3.7.1.Defining CCA-Security -- 3.7.2.Padding-Oracle Attacks -- References and Additional Reading -- Exercises -- 4.Message Authentication Codes -- 4.1.Message Integrity -- 4.1.1.Secrecy vs. Integrity -- 4.1.2.Encryption vs. Message Authentication -- 4.2.Message Authentication Codes [ -] Definitions -- 4.3.Constructing Secure Message Authentication Codes -- 4.3.1.A Fixed-Length MAC --
Contents note continued: 4.3.2.Domain Extension for MACs -- 4.4.CBC-MAC -- 4.4.1.The Basic Construction -- 4.4.2.Proof of Security -- 4.5.Authenticated Encryption -- 4.5.1.Definitions -- 4.5.2.Generic Constructions -- 4.5.3.Secure Communication Sessions -- 4.5.4.CCA-Secure Encryption -- 4.6.Information-Theoretic MACs -- 4.6.1.Constructing Information-Theoretic MACs -- 4.6.2.Limitations on Information-Theoretic MACs -- References and Additional Reading -- Exercises -- 5.Hash Functions and Applications -- 5.1.Definitions -- 5.1.1.Collision Resistance -- 5.1.2.Weaker Notions of Security -- 5.2.Domain Extension: The Merkle[ -]Damgård Transform -- 5.3.Message Authentication Using Hash Functions -- 5.3.1.Hash-and-MAC -- 5.3.2.HMAC -- 5.4.Generic Attacks on Hash Functions -- 5.4.1.Birthday Attacks for Finding Collisions -- 5.4.2.Small-Space Birthday Attacks -- 5.4.3.Time/Space Tradeoffs for Inverting Functions -- 5.5.The Random-Oracle Model --
Contents note continued: 5.5.1.The Random-Oracle Model in Detail -- 5.5.2.Is the Random-Oracle Methodology Sound? -- 5.6.Additional Applications of Hash Functions -- 5.6.1.Fingerprinting and Deduplication -- 5.6.2.Merkle Trees -- 5.6.3.Password Hashing -- 5.6.4.Key Derivation -- 5.6.5.Commitment Schemes -- References and Additional Reading -- Exercises -- 6.Practical Constructions of Symmetric-Key Primitives -- 6.1.Stream Ciphers -- 6.1.1.Linear-Feedback Shift Registers -- 6.1.2.Adding Nonlinearity -- 6.1.3.Trivium -- 6.1.4.RC4 -- 6.2.Block Ciphers -- 6.2.1.Substitution-Permutation Networks -- 6.2.2.Feistel Networks -- 6.2.3.DES [ -] The Data Encryption Standard -- 6.2.4.3DES: Increasing the Key Length of a Block Cipher -- 6.2.5.AES [ -] The Advanced Encryption Standard -- 6.2.6.Differential and Linear Cryptanalysis -- 6.3.Hash Functions -- 6.3.1.Hash Functions from Block Ciphers -- 6.3.2.MD5 -- 6.3.3.SHA-0, SHA-1, and SHA-2 -- 6.3.4.SHA-3 (Keccak) --
Contents note continued: References and Additional Reading -- Exercises -- 7.Theoretical Constructions of Symmetric-Key Primitives -- 7.1.One-Way Functions -- 7.1.1.Definitions -- 7.1.2.Candidate One-Way Functions -- 7.1.3.Hard-Core Predicates -- 7.2.From One-Way Functions to Pseudorandomness -- 7.3.Hard-Core Predicates from One-Way Functions -- 7.3.1.A Simple Case -- 7.3.2.A More Involved Case -- 7.3.3.The Full Proof -- 7.4.Constructing Pseudorandom Generators -- 7.4.1.Pseudorandom Generators with Minimal Expansion -- 7.4.2.Increasing the Expansion Factor -- 7.5.Constructing Pseudorandom Functions -- 7.6.Constructing (Strong) Pseudorandom Permutations -- 7.7.Assumptions for Private-Key Cryptography -- 7.8.Computational Indistinguishability -- References and Additional Reading -- Exercises -- 8.Number Theory and Cryptographic Hardness Assumptions -- 8.1.Preliminaries and Basic Group Theory -- 8.1.1.Primes and Divisibility -- 8.1.2.Modular Arithmetic -- 8.1.3.Groups --
Contents note continued: 8.1.4.The Group Z*N -- 8.1.5.Isomorphisms and the Chinese Remainder Theorem -- 8.2.Primes, Factoring, and RSA -- 8.2.1.Generating Random Primes -- 8.2.2.Primality Testing -- 8.2.3.The Factoring Assumption -- 8.2.4.The RSA Assumption -- 8.2.5.Relating the RSA and Factoring Assumptions -- 8.3.Cryptographic Assumptions in Cyclic Groups -- 8.3.1.Cyclic Groups and Generators -- 8.3.2.The Discrete-Logarithm/Diffie[ -]Hellman Assumptions -- 8.3.3.Working in (Subgroups of) Z*p -- 8.3.4.Elliptic Curves -- 8.4.Cryptographic Applications -- 8.4.1.One-Way Functions and Permutations -- 8.4.2.Constructing Collision-Resistant Hash Functions -- References and Additional Reading -- Exercises -- 9.Algorithms for Factoring and Computing Discrete Logarithms -- 9.1.Algorithms for Factoring -- 9.1.1.Pollard's p [ -] 1 Algorithm -- 9.1.2.Pollard's Rho Algorithm -- 9.1.3.The Quadratic Sieve Algorithm -- 9.2.Algorithms for Computing Discrete Logarithms --
Contents note continued: 9.2.1.The Pohlig[ -]Hellman Algorithm -- 9.2.2.The Baby-Step/Giant-Step Algorithm -- 9.2.3.Discrete Logarithms from Collisions -- 9.2.4.The Index Calculus Algorithm -- 9.3.Recommended Key Lengths -- References and Additional Reading -- Exercises -- 10.Key Management and the Public-Key Revolution -- 10.1.Key Distribution and Key Management -- 10.2.A Partial Solution: Key-Distribution Centers -- 10.3.Key Exchange and the Diffie[ -]Hellman Protocol -- 10.4.The Public-Key Revolution -- References and Additional Reading -- Exercises -- 11.Public-Key Encryption -- 11.1.Public-Key Encryption [ -] An Overview -- 11.2.Definitions -- 11.2.1.Security against Chosen-Plaintext Attacks -- 11.2.2.Multiple Encryption -- 11.2.3.Security against Chosen-Ciphertext Attacks -- 11.3.Hybrid Encryption and the KEM/DEM Paradigm -- 11.3.1.CPA-Security -- 11.3.2.CCA-Security -- 11.4.CDH/DDH-Based Encryption -- 11.4.1.El Gamal Encryption --
Contents note continued: 11.4.2.DDH-Based Key Encapsulation -- 11.4.3.A CDH-Based KEM in the Random-Oracle Model -- 11.4.4.Chosen-Ciphertext Security and DHIES/ECIES -- 11.5.RSA Encryption -- 11.5.1.Plain RSA -- 11.5.2.Padded RSA and PKCS -1 v1.5 -- 11.5.3.CPA-Secure Encryption without Random Oracles -- 11.5.4.OAEP and RSA PKCS -1 v2.0 -- 11.5.5.A CCA-Secure KEM in the Random-Oracle Model -- 11.5.6.RSA Implementation Issues and Pitfalls -- References and Additional Reading -- Exercises -- 12.Digital Signature Schemes -- 12.1.Digital Signatures [ -] An Overview -- 12.2.Definitions -- 12.3.The Hash-and-Sign Paradigm -- 12.4.RSA Signatures -- 12.4.1.Plain RSA -- 12.4.2.RSA-FDH and PKCS -1 v2.1 -- 12.5.Signatures from the Discrete-Logarithm Problem -- 12.5.1.The Schnorr Signature Scheme -- 12.5.2.DSA and ECDSA -- 12.6.Signatures from Hash Functions -- 12.6.1.Lamport's Signature Scheme -- 12.6.2.Chain-Based Signatures -- 12.6.3.Tree-Based Signatures --
Contents note continued: 12.7.Certificates and Public-Key Infrastructures -- 12.8.Putting It All Together [ -] SSL/TLS -- 12.9.Signcryption -- References and Additional Reading -- Exercises -- 13.Advanced Topics in Public-Key Encryption -- 13.1.Public-Key Encryption from Trapdoor Permutations -- 13.1.1.Trapdoor Permutations -- 13.1.2.Public-Key Encryption from Trapdoor Permutations -- 13.2.The Paillier Encryption Scheme -- 13.2.1.The Structure of Z*N2 -- 13.2.2.The Paillier Encryption Scheme -- 13.2.3.Homomorphic Encryption -- 13.3.Secret Sharing and Threshold Encryption -- 13.3.1.Secret Sharing -- 13.3.2.Verifiable Secret Sharing -- 13.3.3.Threshold Encryption and Electronic Voting -- 13.4.The Goldwasser[ -]Micali Encryption Scheme -- 13.4.1.Quadratic Residues Modulo a Prime -- 13.4.2.Quadratic Residues Modulo a Composite -- 13.4.3.The Quadratic Residuosity Assumption -- 13.4.4.The Goldwasser[ -]Micali Encryption Scheme -- 13.5.The Rabin Encryption Scheme --
Contents note continued: 13.5.1.Computing Modular Square Roots -- 13.5.2.A Trapdoor Permutation Based on Factoring -- 13.5.3.The Rabin Encryption Scheme -- References and Additional Reading -- Exercises -- A.1.Identities and Inequalities -- A.2.Asymptotic Notation -- A.3.Basic Probability -- A.4.The "Birthday" Problem -- A.5.Finite Fields -- B.1.Integer Arithmetic -- B.1.1.Basic Operations -- B.1.2.The Euclidean and Extended Euclidean Algorithms -- B.2.Modular Arithmetic -- B.2.1.Basic Operations -- B.2.2.Computing Modular Inverses -- B.2.3.Modular Exponentiation -- B.2.4.Montgomery Multiplication -- B.2.5.Choosing a Uniform Group Element -- B.3.Finding a Generator of a Cyclic Group -- B.3.1.Group-Theoretic Background -- B.3.2.Efficient Algorithms -- References and Additional Reading -- Exercises.
Summary "Cryptography is ubiquitous and plays a key role in ensuring data secrecy and integrity as well as in securing computer systems more broadly. Introduction to Modern Cryptography provides a rigorous yet accessible treatment of this fascinating subject. The authors introduce the core principles of modern cryptography, with an emphasis on formal definitions, clear assumptions, and rigorous proofs of security. The book begins by focusing on private-key cryptography, including an extensive treatment of private-key encryption, message authentication codes, and hash functions. The authors also present design principles for widely used stream ciphers and block ciphers including RC4, DES, and AES, plus provide provable constructions of stream ciphers and block ciphers from lower-level primitives.
The second half of the book covers public-key cryptography, beginning with a self-contained introduction to the number theory needed to understand the RSA, Diffie-Hellman, and El Gamal cryptosystems (and others), followed by a thorough treatment of several standardized public-key encryption and digital signature schemes.
Integrating a more practical perspective without sacrificing rigor, this widely anticipated Second Edition offers improved treatment of:Stream ciphers and block ciphers, including modes of operation and design principlesAuthenticated encryption and secure communication sessionsHash functions, including hash-function applications and design principles Attacks on poorly implemented cryptography, including attacks on chained-CBC encryption, padding-oracle attacks, and timing attacksThe random-oracle model and its application to several standardized, widely used public-key encryption and signature schemesElliptic-curve cryptography and associated standards such as DSA/ECDSA and DHIES/ECIESContaining updated exercises and worked examples, Introduction to Modern Cryptography, Second Edition can serve as a textbook for undergraduate- or graduate-level courses in cryptography, a valuable reference for researchers and practitioners, or a general introduction suitable for self-study. "--
Other author Lindell, Yehuda, author.
Subject Computer security.
Cryptography.
ISBN 9781466570269 (hardback)