My Library

University LibraryCatalogue

Limit search to items available for borrowing or consultation
24 results found. Sorted by relevance | date | title .
Result Page: Previous Next
Can't find that book? Try BONUS+
Look for full text

Search Discovery

Search CARM Centre Catalogue

Search Trove

Add record to RefWorks

Author Bazzan, Ana L. C., author.

Title Introduction to intelligent systems in traffic and transportation / Ana L.C. Bazzan, Franziska Kl�ugl.

Published San Rafael, California (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool, 2014.


Location Call No. Status
Physical description 1 PDF (xvii, 119 pages) : illustrations.
Series Synthesis lectures on artificial intelligence and machine learning, 1939-4616 ; # 25
Synthesis digital library of engineering and computer science.
Synthesis lectures on artificial intelligence and machine learning ; # 25. 1939-4616
Notes Part of: Synthesis digital library of engineering and computer science.
Series from website.
Bibliography Includes bibliographical references (pages 99-118).
Contents 1. Introduction -- 1.1 The importance of transportation -- 1.2 Transportation systems -- 1.3 Intelligent transportation systems --
2. Elements of supply -- 2.1 Traffic network structure -- 2.2 Traffic streams: macroscopic and microscopic parameters -- 2.3 Traffic flow theory -- 2.4 Traffic control measures -- 2.4.1 Signal timing and design -- 2.4.2 Progressive systems -- 2.5 To know more --
3. Elements of demand -- 3.1 Demand modeling -- 3.1.1 Representation of demand -- 3.1.2 Trip-based demand modeling -- 3.1.3 Activity-based demand modeling -- 3.2 Discrete choice modeling for travel demand -- 3.3 Travel demand management -- 3.4 To know more --
4. Traffic assignment: connecting supply and demand -- 4.1 Route computation -- 4.2 Basic trip assignment -- 4.2.1 Assignment on un-congested networks -- 4.2.2 Assignment under congestion and equilibrium -- 4.2.3 Dynamic traffic assignment -- 4.2.4 From user to system optimum -- 4.3 Changing the perspective: from trips to drivers -- 4.4 Evaluation of route assignment -- 4.5 To know more --
5. Getting data for demand estimation and traffic flow modeling -- 5.1 Data collection for estimation of demand and volume -- 5.2 Deriving parameters from data -- 5.3 Sources of public data about network topology and demand -- 5.3.1 OpenStreetMap -- 5.3.2 Transportation network test problems -- 5.4 To know more --
6. Modeling and simulation of advanced decision making -- 6.1 Systematics of traditional approaches -- 6.1.1 Sub-microscopic models -- 6.1.2 Microscopic traffic flow models -- 6.1.3 Macroscopic traffic flow simulation models -- 6.1.4 Mesoscopic traffic flow simulation -- 6.2 Human-like driving with advanced driver models -- 6.2.1 Anticipation -- 6.2.2 Behavior at crossings -- 6.2.3 Emotion and aggressiveness -- 6.2.4 Routing, planning and beyond -- 6.3 To know more --
7. Intelligent measures in control and management -- 7.1 Strategies for intelligent traffic signal control -- 7.1.1 From isolated to coordinated intersections -- 7.1.2 Approaches based on reinforcement learning -- 7.2 Beyond pure traffic signal control -- 7.2.1 Approaches explicitly addressing demand -- 7.2.2 Coordination of drivers' choices -- 7.2.3 Lightless and market-based approaches -- 7.2.4 System-level management -- 7.3 To know more --
8. Driver support and guidance -- 8.1 (Advanced) driver assistance systems -- 8.1.1 Elements of a driver assistance system -- 8.1.2 New technology for cooperative assistance systems -- 8.2 In-vehicle route guidance -- 8.2.1 Basic localization -- 8.2.2 Map-matching -- 8.2.3 Shortest path algorithms -- 8.2.4 Using route guidance -- 8.2.5 Cooperative route guidance -- 8.3 From route guidance to travel recommender systems -- 8.3.1 Extended routing -- 8.3.2 Mobile recommender systems -- 8.4 To know more --
9. Trends and new technologies -- 9.1 Interconnected automobiles -- 9.2 Some projects around autonomous vehicles and personal transit -- 9.3 Future of traffic management -- 9.3.1 Participatory traffic management -- 9.3.2 Autonomic traffic management -- 9.3.3 Crowd sensing -- 9.4 To know more --
Bibliography -- Authors' biographies.
Restrictions Abstract freely available; full-text restricted to subscribers or individual document purchasers.
Summary Urban mobility is not only one of the pillars of modern economic systems, but also a key issue in the quest for equality of opportunity, once it can improve access to other services. Currently, however, there are a number of negative issues related to traffic, especially in mega-cities, such as economical issues (cost of opportunity caused by delays), environmental (externalities related to emissions of pollutants), and social (traffic accidents). Solutions to these issues are more and more closely tied to information and communication technology. Indeed, a search in the technical literature (using the keyword "urban traffic" to filter out articles on data network traffic) retrieved the following number of articles (as of December 3, 2013): 9,443 (ACM Digital Library), 26,054 (Scopus), and 1,730,000 (Google Scholar). Moreover, articles listed in the ACM query relate to conferences as diverse as MobiCom, CHI, PADS, and AAMAS. This means that there is a big and diverse community of computer scientists and computer engineers who tackle research that is connected to the development of intelligent traffic and transportation systems. It is also possible to see that this community is growing, and that research projects are getting more and more interdisciplinary. To foster the cooperation among the involved communities, this book aims at giving a broad introduction into the basic but relevant concepts related to transportation systems, targeting researchers and practitioners from computer science and information technology. In addition, the second part of the book gives a panorama of some of the most exciting and newest technologies, originating in computer science and computer engineering, that are now being employed in projects related to car-to-car communication, interconnected vehicles, car navigation, platooning, crowd sensing and sensor networks, among others. This material will also be of interest to engineers and researchers from the traffic and transportation community.
Other formats Also available in print.
System notes Mode of access: World Wide Web.
System requirements: Adobe Acrobat Reader.
Notes Title from PDF title page (viewed on January 13, 2014).
Other author Kl�ugl, Franziska., author.
Subject Intelligent transportation systems.
intelligent transportation systems
traffic modeling
traffic simulation
advanced traveler information systems
traffic control
traffic assignment
traffic management
route choice
route guidance
driver assistance systems
car to car communication
artificial intelligence
machine learning
reinforcement learning
swarm intelligence
multiagent systems
ISBN 9781627052085 ebook
9781627052078 paperback
Standard Number 10.2200/S00553ED1V01Y201312AIM025