My Library

University LibraryCatalogue

     
Limit search to items available for borrowing or consultation
Result Page: Previous Next
Can't find that book? Try BONUS+
 
Look for full text

Search Discovery

Search CARM Centre Catalogue

Search Trove

Add record to RefWorks

E-RESOURCE
Author Chen, Wei., author.

Title Information and influence propagation in social networks / Wei Chen, Laks V.S. Lakshmanan, Carlos Castillo.

Published San Rafael, California (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool, 2014.

Copies

Location Call No. Status
 UniM INTERNET resource    AVAILABLE
Physical description 1 PDF (xv, 161 pages) : illustrations.
Series Synthesis lectures on data management, 2153-5426 ; # 37
Synthesis digital library of engineering and computer science.
Synthesis lectures on data management ; # 37. 2153-5426
Notes Part of: Synthesis digital library of engineering and computer science.
Series from website.
Bibliography Includes bibliographical references (pages 143-155) and index.
Contents 1. Introduction -- 1.1 Social networks and social influence -- 1.1.1 Examples of social networks -- 1.1.2 Examples of information propagation -- 1.2 Social influence examples -- 1.3 Social influence analysis applications -- 1.4 The flip side -- 1.5 Outline of this book --
2. Stochastic diffusion models -- 2.1 Main progressive models -- 2.1.1 Independent cascade model -- 2.1.2 Linear threshold model -- 2.1.3 Submodularity and monotonicity of influence spread function -- 2.1.4 General threshold model and general cascade model -- 2.2 Other related models -- 2.2.1 Epidemic models -- 2.2.2 Voter model -- 2.2.3 Markov random field model -- 2.2.4 Percolation theory --
3. Influence maximization -- 3.1 Complexity of influence maximization -- 3.2 Greedy approach to influence maximization -- 3.2.1 Greedy algorithm for influence maximization -- 3.2.2 Empirical evaluation of (G,k) -- 3.3 Scalable influence maximization -- 3.3.1 Reducing the number of influence spread evaluations -- 3.3.2 Speeding up influence computation -- 3.3.3 Other scalable influence maximization schemes --
4. Extensions to diffusion modeling and influence maximization -- 4.1 A data-based approach to influence maximization -- 4.2 Competitive influence modeling and maximization -- 4.2.1 Model extensions for competitive influence diffusion -- 4.2.2 Maximization problems for competitive influence diffusion -- 4.2.3 Endogenous competition -- 4.2.4 A new frontier, the host perspective -- 4.3 Influence, adoption, and profit -- 4.3.1 Influence vs. adoption -- 4.3.2 Influence vs. profit -- 4.4 Other extensions --
5. Learning propagation models -- 5.1 Basic models -- 5.2 IC model -- 5.3 Threshold models -- 5.3.1 Static models -- 5.3.2 Does influence remain static? -- 5.3.3 Continuous time models -- 5.3.4 Discrete time models -- 5.3.5 Are all objects equally influence prone? -- 5.3.6 Algorithms -- 5.3.7 Experimental validation -- 5.3.8 Discussion --
6. Data and software for information/influence: propagation research -- 6.1 Types of datasets -- 6.2 Propagation of information "memes" -- 6.2.1 Microblogging -- 6.2.2 Newspapers/blogs/etc. -- 6.3 Propagation of other actions -- 6.3.1 Consumption/appraisal platforms -- 6.3.2 User-generated content sharing/voting -- 6.3.3 Community membership as action -- 6.3.4 Cross-provider data -- 6.3.5 Phone logs -- 6.4 Network-only datasets -- 6.4.1 Citation networks -- 6.4.2 Other networks -- 6.5 Other off-line datasets -- 6.6 Publishing your own datasets -- 6.7 Software tools -- 6.7.1 Graph software tools -- 6.7.2 Propagation software tools -- 6.7.3 Visualization -- 6.8 Conclusions --
7. Conclusion and challenges -- 7.1 Application-specific challenges -- 7.1.1 Prove value for advertising/marketing -- 7.1.2 Learn to design for virality -- 7.1.3 Correct for sampling biases -- 7.1.4 Contribute to other applications -- 7.2 Technical challenges -- 7.3 Conclusions --
A. Notational conventions -- Bibliography -- Authors' biographies -- Index.
Restrictions Abstract freely available; full-text restricted to subscribers or individual document purchasers.
Summary Research on social networks has exploded over the last decade. To a large extent, this has been fueled by the spectacular growth of social media and online social networking sites, which continue growing at a very fast pace, as well as by the increasing availability of very large social network datasets for purposes of research. A rich body of this research has been devoted to the analysis of the propagation of information, influence, innovations, infections, practices and customs through networks. Can we build models to explain the way these propagations occur? How can we validate our models against any available real datasets consisting of a social network and propagation traces that occurred in the past? These are just some questions studied by researchers in this area. Information propagation models find applications in viral marketing, outbreak detection, finding key blog posts to read in order to catch important stories, finding leaders or trendsetters, information feed ranking, etc. A number of algorithmic problems arising in these applications have been abstracted and studied extensively by researchers under the garb of influence maximization.
Other formats Also available in print.
System notes Mode of access: World Wide Web.
System requirements: Adobe Acrobat Reader.
Notes Title from PDF title page (viewed on November 13, 2013).
Other author Lakshmanan, Laks V. S., 1959-, author.
Castillo, Carlos, 1977-, author.
Subject Online social networks.
Social influence -- Mathematical models.
social networks
social influence
information and influence diffusion
stochastic diffusion models
influence maximization
learning of propagation models
viral marketing
competitive influence diffusion
game theory
computational complexity
approximation algorithms
heuristic algorithms
scalability
ISBN 9781627051163 ebook
9781627051156 paperback
Standard Number 10.2200/S00527ED1V01Y201308DTM037