My Library

University LibraryCatalogue

Limit search to items available for borrowing or consultation
Result Page: Previous Next
Can't find that book? Try BONUS+
Look for full text

Search Discovery

Search CARM Centre Catalogue

Search Trove

Add record to RefWorks

Book Cover

Title Microbial metal respiration : from geochemistry to potential applications / Johannes Gescher, Andreas Kappler, editors.

Published Heidelberg : Springer, [2013]


Location Call No. Status
Physical description 1 online resource (viii, 233 pages) : illustrations.
Bibliography Includes bibliographical references and index.
Contents Minerals and Aqueous Species of Iron and Manganese as Reactants and Products of Microbial Metal Respiration -- Energetic and Molecular Constraints on the Mechanism of Environmental Fe(III) Reduction by Geobacter -- Biochemistry of Extracellular Respiration in Shewanella oneidensis -- On the Role of Endogenous Electron Shuttles in Extracellular Electron Transfer -- Humic Substances and Extracellular Electron Transfer -- Metal Reducers und Reduction Targets. A Short Survey about the Distribution of Dissimilatory Metal Reducers and the Multitude of Terminal Electron Acceptors -- Metal Reduction as a Tool in Bioremediation Processes -- Dissimilatory Metal Reducers Producing Electricity -- Microbial Fuel Cells.
Summary Microbes can respire on metals. This seemingly simple finding is one of the major discoveries that were made in the field of microbiology in the last few decades. The importance of this observation is evident. Metals are highly abundant on our planet. Iron is even the most abundant element on Earth and the forth most abundant element in the Earths crust. Hence, in some environments iron, but also other metals or metalloids, are the dominant respiratory electron acceptors. Their reduction massively drives the carbon cycle in these environments and establishes redox cycles of the metallic electron acceptors themselves. These redox cycles are not only a driving force for other biotic reactions but are furthermore necessary for initiating a number of geochemically relevant abiotic redox conversions. Although widespread and ecologically influential, electron transfer onto metals like ferric iron or manganese is biochemically challenging. The challenge is to transfer respiratory electrons onto metals that occur in nature at neutral pH in the form of metal oxides or oxihydroxides that are effectively insoluble. Obviously, it is necessary that the microbes specially adapt in order to catalyze the electron transfer onto insoluble electron acceptors. The elucidation of these adaptations is an exciting ongoing process. To sum it up, dissimilatory metal reduction has wide-spread implications in the field of microbiology, biochemistry and geochemistry and its discovery was one of the major reasons to establish a novel scientific field called geomicrobiology. Recently, the discovery of potential applications of dissimilatory metal reducers in bioremediation or current production in a microbial fuel cell further increased the interest in studying microbial metal reduction.
Notes Description based on print version record.
Other author Gescher, Johannes, editor of compilation.
Kappler, Andreas, editor of compilation.
Subject Microbial respiration.
Metals -- Microbiology.
SCIENCE / Life Sciences / Biochemistry
Electronic books.
ISBN 9783642328671 (electronic bk.)
3642328679 (electronic bk.)
Standard Number 10.1007/978-3-642-32867-1