My Library

University LibraryCatalogue

     
Limit search to items available for borrowing or consultation
Result Page: Previous Next
Can't find that book? Try BONUS+
 
Look for full text

Search Discovery

Search CARM Centre Catalogue

Search Trove

Add record to RefWorks

Cover Art
PRINTED BOOKS
Author Stewart, Joseph V.

Title Intermediate electromagnetic theory / Joseph V. Stewart.

Published Singapore ; River Edge, NJ : World Scientific, [2001]
©2001

Copies

Location Call No. Status
 UniM ERC  530.141 STEW    AVAILABLE
Physical description xii, 742 pages : illustrations ; 23 cm
Contents Chapter I Mathematics of Electricity and Magnetism 1 -- 1-1 Scalars, Vectors and Vector Addition 1 -- 1-2 Vector Multiplication 4 -- 1-3 Fields 10 -- 1-4 Vector Calculus: The Gradient 11 -- 1-5 Divergence of a Vector 16 -- 1-6 Divergence Theorem 17 -- 1-7 Curl of a Vector 21 -- 1-8 Stokes's Theorem 22 -- 1-9 Derivatives of Scalar and Vector Products 25 -- 1-10 Higher Derivatives 25 -- 1-11 Curvilinear Coordinates 27 -- 1-12 Tensors and Matrices 35 -- 1-13 Complex Numbers 44 -- Appendix I Vector Identities 47 -- Chapter II Electrostatics 50 -- 2-1 Coulomb's Law 51 -- 2-2 Principle of Superposition; Charge Distribution 54 -- 2-3 Electric Field 57 -- 2-4 Calculation of the Electric Field 59 -- 2-5 Conductors and Insulators 66 -- 2-6 Gauss's Law 68 -- 2-7 Electric Potential 80 -- 2-8 Calculation of the Electric Potential 85 -- 2-9 Continuity Equations for E and [Phi] 91 -- 2-10 Capacitors 93 -- 2-11 Equations of Laplace and Poisson: The Second Derivatives of the Potential Field 96 -- 2-12 Dirac [delta]-Function 96 -- 2-13 Electrostatic Energy 99 -- Appendix II Dirac [delta]-Function 105 -- Chapter III Boundary Value Problems: The Solutions To Laplace's Equation and Poisson's Equation 111 -- 3-1 Boundary Conditions 111 -- 3-2 Superposition Theorem 112 -- 3-3 Uniqueness Theorem 112 -- 3-4 Solution to Laplace's Equation in One or Two Dimensions: Cartesian Coordinates 113 -- 3-5 Laplace's Equation in One and Two Dimensions; Cylindrical Symmetry 119 -- 3-6 Laplace's Equation in One or Two Dimensions; Spherical Coordinates 130 -- 3-7 Solution to Laplace's Equation in Three Dimensions 140 -- 3-8 Poisson's Equation 144 -- 3-9 Method of Images 146 -- 3-10 Green's Functions; The General Solution of Poisson's Equation 153 -- Appendix III Bessel Functions 167 -- Appendix IV Legendre Polynomials 180 -- Chapter IV Current and Conduction 197 -- 4-1 Current and Current Density 197 -- 4-2 Conductivity, Resistance and Ohms Law 199 -- 4-3 Microscopic Description of Conductivity 204 -- 4-4 Band Theory of Solids 209 -- 4-5 Conductivity in Metals 212 -- 4-6 Fermi-Dirac Statistics; Conductivity in Semiconductors and Insulators 214 -- 4-7 Doped Semiconductors 216 -- 4-8 Conductivity in a P-N Junction 219 -- 4-9 Properties of the P-N Junction 220 -- 4-10 Conductivity in an Electron Gas 223 -- 4-11 Superconductivity 226 -- 4-12 Josephson Effect 227 -- Chapter V Magnetic Field of Steady Currents 231 -- 5-1 Biot-Savart Law 232 -- 5-2 Divergence of B; Magnetic Flux 244 -- 5-3 Curl of B 246 -- 5-4 Ampere's Law 248 -- 5-5 Magnetic Scalar Potential 259 -- 5-6 Magnetic Vector Potential 263 -- 5-7 Lorentz Force Law 277 -- 5-8 Hall Effect 286 -- Appendix V Elliptic Integrals 290 -- Chapter VI Electric Field in Matter 295 -- 6-1 Dipole Field 296 -- 6-2 Energy, Force and Torque on a Dipole 300 -- 6-3 Electric Field Outside a Dielectric 301 -- 6-4 Electric Field Inside a Dielectric 303 -- 6-5 Gauss's Law in a Dielectric; The Displacement Vector 306 -- 6-6 Electric Susceptibility and the Dielectric Constant 308 -- 6-7 Dielectric Materials 314 -- 6-8 Derivation of Susceptibility from the Molecular Polarization 317 -- 6-9 Boundary Conditions for Dielectric Surfaces 319 -- 6-10 Electrostatic Energy in Dielectrics 332 -- 6-11 Interaction of the Electric Field with a Plasma 333 -- 6-12 Multipole Expansion of a Charge Distribution 335 -- 6-13 Expansion in Cartesian Coordinates 339 -- 6-14 Expansion in Spherical Harmonics 344 -- Chapter VII Magnetic Fields in Matter 351 -- 7-1 Multipole Expansion of the Magnetic Field 351 -- 7-2 Magnetic Fields in Magnetic Materials 354 -- 7-3 Magnetic Fields Inside Matter 357 -- 7-4 Boundary Conditions on the Magnetic Field Vectors 362 -- 7-5 Boundary Value Problems of the Magnetic Field 364 -- 7-6 Nature of Magnetic Materials 367 -- 7-7 Ferromagnetism 373 -- 7-8 Other Magnetic Materials 377 -- 7-9 Temperature Dependence of Paramagnetism 378 -- 7-10 Superconductivity 381 -- Chapter VIII Time Dependent Fields; Faraday's Law 387 -- 8-1 Faraday's Law 387 -- 8-2 Electromotive Force 389 -- 8-3 Lenz's Law 391 -- 8-4 Motional Electromotive Force 392 -- 8-5 General Electromotive Force 393 -- 8-6 Differential Faraday's Law 398 -- 8-7 Time Dependent Field Potentials 405 -- 8-8 Inductance 405 -- 8-9 Self-Inductance 410 -- 8-10 Energy of the Magnetic Field 414 -- Chapter IX Maxwell's Equations 424 -- 9-1 Displacement Current 425 -- 9-2 Wave Equation 430 -- 9-3 Time-Dependent Potential Function 434 -- 9-4 Poynting's Theorem 437 -- 9-5 Field Momentum 442 -- 9-6 Solution of the Wave Equation 446 -- 9-7 Description of Waves in Complex Numbers 448 -- 9-8 Parameters of the Wave Equation 450 -- 9-9 Electromagnetic Waves 453 -- 9-10 Polarization 456 -- 9-11 General Description of a Plane Wave 459 -- 9-12 Energy of a Wave 461 -- 9-13 Spherical Waves 465 -- Appendix VI Units 473 -- Chapter X Applications of Maxwell's Equations: the Optics of Plane Waves 490 -- 10-1 Laws of Reflection and Refraction 490 -- 10-2 Amplitudes of the Reflected and Transmitted Waves: Fresnel's Equations 496 -- 10-3 Total Internal Reflection 506 -- 10-4 Interaction of Plane Electromagnetic Waves with Conductors 513 -- 10-5 Interference 527 -- 10-6 Diffraction 540 -- 10-7 Optical Dispersion 555 -- Chapter XI Application of Maxwell's Equations: Guided Waves 567 -- 11-1 Rectangular Metal Waveguide 567 -- 11-2 Circular Cylindrical Waveguide 587 -- 11-3 Coaxial Waveguide 597 -- 11-4 Cavity Resonators 600 -- 11-5 Attenuation in Waveguides 604 -- 11-6 Dielectric Waveguides 609 -- Chapter XII Application of Maxwell's Equations: Radiation 623 -- 12-1 Solution of the Inhomogeneous Wave Equation 623 -- 12-2 Multipole Expansion of a Time Dependent Charge Distribution 626 -- 12-3 Field of an Electric Dipole 629 -- 12-4 Antenna Radiation--The Center Fed Antenna 641 -- 12-5 Half-Wave Antenna 645 -- 12-6 Antenna Arrays 648 -- 12-7 Hertz Vector Potentials 650 -- 12-8 Radiation Field of Moving Particles 654 -- 12-9 Radiation Reaction 671 -- Appendix VII Fourier Integrals: General Solution to the Inhomogeneous Wave Equation 674 -- Chapter XIII Relativity 681 -- 13-1 Galilean Transformation 681 -- 13-2 Electromagnetic Test of Relativity 683 -- 13-3 Trouton-Noble Experiment 685 -- 13-4 Michelson Morley Experiment 687 -- 13-5 Postulates of Einstein 691 -- 13-6 Lorentz Transformation 698 -- 13-7 Effect of the Lorentz Transformation 704 -- 13-8 Tensor Formulation of Relativity 711 -- 13-9 Transformation of Velocity and Momentum 714 -- 13-10 Covariant Formulation of the Electromagnetic Field 719 -- 13-11 Maxwell Stress Tensor 725 -- 13-12 Field of a Uniformly Moving Charge 728 -- 13-13 Relativistic Derivation of the Radiation Fields 732 -- 13-14 Relativistic Motion of Charged Particles in an Electromagnetic Field; The Relativistic Lorentz Force Law 734.
Summary This invaluable text has been developed to provide students with more background on the applications of electricity and magnetism, particularly with those topics which relate to current research. For example, waveguides (both metal and dielectric) are discussed more thoroughly than in most texts because they are an important laboratory tool and important components of modern communications. In a sense, this book modernizes the topics covered in the typical course on electricity and magnetism. It provides not only solid background for the student who chooses a field which uses techniques requiring knowledge of electricity and magnetism, but also general background for the physics major.
Subject Electromagnetic theory.
Electromagnetism.
ISBN 9810244703
9810244711 (paperback)