My Library

University LibraryCatalogue

For faster,
simpler
access.
Use Lean
Library.
Get it now
Don't show me again
     
Limit search to items available for borrowing or consultation
Result Page: Previous Next
Can't find that book? Try BONUS+
 
Look for full text

Search Discovery

Search CARM Centre Catalogue

Search Trove

Add record to RefWorks

Cover Art
E-RESOURCE

Title Induction accelerators [electronic resource] / Ken Takayama, Richard J. Briggs, editors.

Published Berlin ; Heidelberg : Springer, c2011.

Copies

Location Call No. Status
 UniM INTERNET resource    AVAILABLE
Physical description 1 online resource (xv, 339 p.) : ill., col. ports.
Series Particle acceleration and detection
Particle acceleration and detection.
Bibliography Includes bibliographical references and index.
Contents Note continued: 6.10. Coupling Impedance -- 6.10.1. General Form of the Transverse Impedance -- 6.10.2. Minimizing the Transverse Impedance in Induction Cell Designs -- 6.10.3. Measurment of the Transverse Impedacnce -- 6.11. High Average Power -- 6.12. Summary of Cell Design -- References -- 7. Electron Induction Linacs / Yu-Jiuan Chen -- 7.1. Introduction -- 7.2. Electron Sources -- 7.2.1. Cathodes -- 7.2.2. Electron Guns -- 7.3. Beam Dynamics in Induction Machines -- 7.3.1. Basic Force Equation -- 7.3.2. Coordinate Description of a Beam -- 7.3.3. Focusing in a Solenoidal Field -- 7.4. Envelope Equations -- 7.4.1. Lee-Cooper Envelope Equation -- 7.4.2. KV Envelope Equations -- 7.5. Corkscrew Motion -- 7.5.1. Corkscrew Amplitude -- 7.5.2. Tuning Curve Algorithm -- 7.6. Instabilities -- 7.6.1. Image Displacement Instability -- 7.6.2. Beam Breakup Instability (BBU) -- 7.7. Induction Linac Design Considerations -- 7.7.1. Optimal Focusing Strategy -- 7.8. Nonlinear Focusing to Suppress BBU -- 7.8.1. Motivation for Nonlinear Focusing Systems -- 7.8.2. Laser Generated Ion Channel -- 7.8.3. Phase Mix Damping of BBU -- References -- 8. Applications of Electron Linear Induction Accelerators / Yu-Jiuan Chen -- 8.1. Linear Induction Accelerators Built for Flash X-Ray Radiography -- 8.1.1. Induction Accelerators Built for Radiography -- 8.1.2. Beam Requirements -- 8.1.3. Target Issues -- 8.2. Free Electron Lasers Driven by LIAs -- 8.2.1. ELF Experiments on the ETA Accelerator -- 8.2.2. Short Wavelength Radiation Production Using the ATA Accelerator -- 8.2.3. Use of Induction Accelerators to Produce Millimeter Wavelength Power for Tokamak Heating -- 8.3. Two-Beam Accelerators -- 8.4. High Average Power Applications -- 8.5. Conclusion -- References -- 9. Ion Induction Accelerators / Kazuhiko Horioka --
Note continued: 9.1. Ion Sources and Injectors -- 9.1.1. Physics of High Current-Density Ion Sources -- 9.1.2. Ion Sources -- 9.1.3. Example Injectors -- 9.2. Longitudinal Beam Dynamics -- 9.2.1. Fluid Equation Approach -- 9.2.2. "g-Factor" Descriptions of Ez -- 9.2.3. Rarefaction Waves -- 9.2.4. "Ear Fields" -- 9.2.5. Longitudinal Waves -- 9.2.6. Longitudinal Instability -- 9.2.7. Effects of Capacitance on Longitudinal Instability -- 9.3. Transverse Dynamics Issues -- References -- 10. Applications of Ion Induction Accelerators / Richard J. Briggs -- 10.1. Driver for Heavy Ion Fusion (HIF) -- 10.1.1. Requirements Set by Target Physics -- 10.1.2. Final Focus Limits -- 10.1.3. Accelerator Architectures for Inertial Fusion Energy -- 10.1.4. Induction Acceleration and Energy Loss Mechanisms -- 10.1.5. Scaling of the Focusing Systems -- 10.1.6. Accelerator Scaling with Charge-to-Mass Ratio -- 10.1.7. Multi-Beam Linac with Quadrupole Focusing -- 10.1.8. Modular Drivers -- 10.1.9. Recirculator -- 10.1.10. Beam Manipulations -- 10.2. Other Applications of Ion Induction Accelerators -- 10.2.1. High Energy Density Physics, and Warm Dense Matter Physics -- 10.2.2. Neutron Spallation Source -- References -- 11. Induction Synchrotron / Ken Takayama -- 11.1. Principle of Induction Synchrotron -- 11.1.1. Review of Phase Dynamics in an RF Synchrotron -- 11.1.2. Phase Dynamics in the Induction Synchrotron -- 11.2. Beam Handling -- 11.2.1. Beam Injection -- 11.2.2. Beam Stacking and Super-Bunch Formation -- 11.2.3. Transition Crossing -- 11.3. Induction Devices for an Induction Synchrotron -- 11.3.1. Equivalent Circuit Model -- 11.3.2. Induction Cell -- 11.3.3. Switching Power Supply (Power Modulator) -- 11.4. Proof of Principle Experiment -- 11.4.1. Beam-Cell Interaction: Beam Loading --
Note continued: 11.4.2. Scenario of Proof of Principle Experiment -- 11.4.3. Induction Acceleration of an RF Bunch -- 11.4.4. Confinement by Induction Barrier Voltages -- 11.4.5. Induction Acceleration of a Trapped Barrier Bunch-Full Demonstration of the Induction Synchrotron -- 11.5. Perspective -- References -- 12. Applications of Induction Synchrotrons / Ken Takayama -- 12.1. Typical Accelerator Complex Capable of Employing the Induction Synchrotron Scheme -- 12.2. Hybrid Synchrotrons -- 12.2.1. Quasi-adiabatic Focusing-Free Transition Crossing -- 12.3. Super-Bunch Hadron Colliders -- 12.3.1. Introduction -- 12.3.2. Contrast of Coasting Beam, RF Bunch Collider, and Super-Bunch Colliders -- 12.3.3. Generation of the Super-Bunch -- 12.3.4. Luminosity -- 12.3.5. Beam-Beam Effects and Crossing Geometry -- 12.3.6. Typical Super-Bunch Collider's Parameters -- 12.3.7. Beam Physics Issues for the Super-Bunch Hadron Collider -- 12.4. All-Ion Accelerator-An Injector-Free Induction Synchrotron -- 12.4.1. Introduction -- 12.4.2. Concept -- 12.4.3. Digital Acceleration and Switching Frequency -- 12.4.4. Longitudinal Confinement -- 12.4.5. Stacking and Beam Handling Through the Acceleration -- 12.4.6. Transverse Focusing -- 12.4.7. Space Charge Limited Ion-Beam Intensity -- 12.4.8. Vacuum -- 12.4.9. Ion Source and Injector -- 12.4.10. Summary -- References.
Notes Description based on print version record.
Other author Takayama, Ken.
Briggs, Richard J.
Subject Betatrons.
Electronic books.
ISBN 9783642139178 (electronic bk.)
3642139175 (electronic bk.)