My Library

University LibraryCatalogue

For faster,
simpler
access.
Use Lean
Library.
Get it now
Don't show me again
     
Limit search to items available for borrowing or consultation
Result Page: Previous Next
Can't find that book? Try BONUS+
 
Look for full text

Search Discovery

Search CARM Centre Catalogue

Search Trove

Add record to RefWorks

Cover Art
PRINTED BOOKS
Author Gross, Jonathan L.

Title Topological graph theory / Jonathan L. Gross, Thomas W. Tucker.

Published Mineola, N.Y. : Dover Publications, [2001]
©2001

Copies

Location Call No. Status
 UniM ERC  511.5 GROS    AVAILABLE
Edition Dover ed.
Physical description xv, 361 pages ; 22 cm
Notes Originally published: New York : Wiley, c1987.
Bibliography Includes bibliographical references (pages 341-349) and index.
Includes bibliographical references and index.
Contents 1.1. Representation of graphs 1 -- 1.2. Some important classes of graphs 7 -- 1.3. New graphs from old 16 -- 1.4. Surfaces and imbeddings 24 -- 1.5. More graph-theoretic background 33 -- 1.6. Planarity 42 -- 2. Voltage Graphs and Covering Spaces 56 -- 2.1. Ordinary voltages 57 -- 2.2. Which graphs are derivable with ordinary voltages? 66 -- 2.3. Irregular covering graphs 72 -- 2.4. Permutation voltage graphs 81 -- 2.5. Subgroups of the voltage group 86 -- 3. Surfaces and Graph Imbeddings 95 -- 3.1. Surfaces and simplicial complexes 95 -- 3.2. Band decompositions and graph imbeddings 109 -- 3.3. Classification of surfaces 119 -- 3.4. Imbedding distribution of a graph 132 -- 3.5. Algorithms and formulas for minimum imbeddings 149 -- 4. Imbedded Voltage Graphs and Current Graphs 162 -- 4.1. Derived imbedding 162 -- 4.2. Branched coverings of surfaces 174 -- 4.3. Regular branched coverings and group actions 182 -- 4.4. Current graphs 191 -- 4.5. Voltage-current duality 202 -- 5. Map Colorings 215 -- 5.1. Heawood upper bound 216 -- 5.2. Quotients of complete-graph imbeddings and some variations 224 -- 5.3. Regular nonorientable cases 236 -- 5.4. Additional adjacencies for irregular cases 241 -- 6. Genus of a Group 249 -- 6.1. Genus of abelian groups 249 -- 6.2. Symmetric genus 264 -- 6.3. Groups of small symmetric genus 283 -- 6.4. Groups of small genus 300.
Other author Tucker, Thomas W.
Subject Topological graph theory.
Topology.
ISBN 0486417417 (paperback)