My Library

University LibraryCatalogue

For faster,
simpler
access.
Use Lean
Library.
Get it now
Don't show me again
     
Limit search to items available for borrowing or consultation
Result Page: Previous Next
Can't find that book? Try BONUS+
 
Look for full text

Search Discovery

Search CARM Centre Catalogue

Search Trove

Add record to RefWorks

Cover Art
PRINTED BOOKS
Author Schubert, E. Fred.

Title Light-emitting diodes / E. Fred Schubert.

Published Cambridge : Cambridge University Press, 2006.

Copies

Location Call No. Status
 UniM ERC  621.381522 SCHU    AVAILABLE
Physical description x, 422 pages : illustrations ; 26 cm
Bibliography Includes bibliographical references and index.
Contents 1 History of light-emitting diodes 1 -- 1.1 History of SiC LEDs 1 -- 1.2 History of GaAs and AlGaAs infrared and red LEDs 4 -- 1.3 History of GaAsP LEDs 8 -- 1.4 History of GaP and GaAsP LEDs doped with optically active impurities 9 -- 1.5 History of GaN metal-semiconductor emitters 15 -- 1.6 History of blue, green, and white LEDs based on GaInN p-n junctions 17 -- 1.7 History of AlGaInP visible-spectrum LEDs 19 -- 1.8 LEDs entering new fields of applications 21 -- 2 Radiative and non-radiative recombination 27 -- 2.1 Radiative electron-hole recombination 27 -- 2.2 Radiative recombination for low-level excitation 28 -- 2.3 Radiative recombination for high-level excitation 32 -- 2.4 Bimolecular rate equations for quantum well structures 33 -- 2.5 Luminescence decay 33 -- 2.6 Non-radiative recombination in the bulk 35 -- 2.7 Non-radiative recombination at surfaces 41 -- 2.8 Competition between radiative and non-radiative recombination 44 -- 3 Theory of radiative recombination 48 -- 3.1 Quantum mechanical model of recombination 48 -- 3.2 Van Roosbroeck-Shockley model 50 -- 3.3 Temperature and doping dependence of recombination 54 -- 3.4 Einstein model 56 -- 4 LED basics: Electrical properties 59 -- 4.1 Diode current-voltage characteristic 59 -- 4.2 Deviations from ideal I-V characteristic 63 -- 4.3 Evaluation of diode parasitic resistances 67 -- 4.4 Emission energy 68 -- 4.5 Carrier distribution in p-n homojunctions 69 -- 4.6 Carrier distribution in p-n heterojunctions 70 -- 4.7 Effect of heterojunctions on device resistance 71 -- 4.8 Carrier loss in double heterostructures 75 -- 4.9 Carrier overflow in double heterostructures 78 -- 4.10 Electron-blocking layers 81 -- 4.11 Diode voltage 83 -- 5 LED basics: Optical properties 86 -- 5.1 Internal, extraction, external, and power efficiencies 86 -- 5.2 Emission spectrum 87 -- 5.3 Light escape cone 91 -- 5.4 Radiation pattern 93 -- 5.5 Lambertian emission pattern 94 -- 5.6 Epoxy encapsulants 97 -- 5.7 Temperature dependence of emission intensity 98 -- 6 Junction and carrier temperatures 101 -- 6.1 Carrier temperature and high-energy slope of spectrum 101 -- 6.2 Junction temperature and peak emission wavelength 103 -- 6.3 Theory of temperature dependence of diode forward voltage 104 -- 6.4 Measurement of junction temperature using forward voltage 108 -- 6.5 Constant-current and constant-voltage DC drive circuits 110 -- 7 High internal efficiency designs 113 -- 7.1 Double heterostructures 113 -- 7.2 Doping of active region 116 -- 7.3 p-n junction displacement 118 -- 7.4 Doping of the confinement regions 119 -- 7.5 Non-radiative recombination 122 -- 7.6 Lattice matching 123 -- 8 Design of current flow 127 -- 8.1 Current-spreading layer 127 -- 8.2 Theory of current spreading 133 -- 8.3 Current crowding in LEDs on insulating substrates 136 -- 8.4 Lateral injection schemes 140 -- 8.5 Current-blocking layers 142 -- 9 High extraction efficiency structures 145 -- 9.1 Absorption of below-bandgap light in semiconductors 145 -- 9.2 Double heterostructures 149 -- 9.3 Shaping of LED dies 150 -- 9.4 Textured semiconductor surfaces 154 -- 9.5 Cross-shaped contacts and other contact geometries 156 -- 9.6 Transparent substrate technology 157 -- 9.7 Anti-reflection optical coatings 159 -- 9.8 Flip-chip packaging 160 -- 10 Reflectors 163 -- 10.1 Metallic reflectors, reflective contacts, and transparent contacts 164 -- 10.2 Total internal reflectors 168 -- 10.3 Distributed Bragg reflectors 170 -- 10.4 Omnidirectional reflectors 181 -- 10.5 Specular and diffuse reflectors 184 -- 11 Packaging 191 -- 11.1 Low-power and high-power packages 191 -- 11.2 Protection against electrostatic discharge (ESD) 193 -- 11.3 Thermal resistance of packages 195 -- 11.4 Chemistry of encapsulants 196 -- 11.5 Advanced encapsulant structures 198 -- 12 Visible-spectrum LEDs 201 -- 12.1 GaAsP, GaP, GaAsP:N, and GaP:N material systems 201 -- 12.2 AlGaAs/GaAs material system 206 -- 12.3 AlGaInP/GaAs material system 209 -- 12.4 GaInN material system 211 -- 12.5 General characteristics of high-brightness LEDs 213 -- 12.6 Optical characteristics of high-brightness LEDs 216 -- 12.7 Electrical characteristics of high-brightness LEDs 218 -- 13 AlGaInN material system and ultraviolet emitters 222 -- 13.1 UV spectral range 222 -- 13.2 AlGaInN bandgap 223 -- 13.3 Polarization effects in III-V nitrides 224 -- 13.4 Doping activation in III-V nitrides 226 -- 13.5 Dislocations in III-V nitrides 227 -- 13.6 UV devices emitting at wavelengths longer than 360 nm 231 -- 13.7 UV devices emitting at wavelengths shorter than 360 nm 233 -- 14 Spontaneous emission from resonant cavities 239 -- 14.1 Modification of spontaneous emission 239 -- 14.2 Fabry-Perot resonators 241 -- 14.3 Optical mode density in a one-dimensional resonator 244 -- 14.4 Spectral emission enhancement 248 -- 14.5 Integrated emission enhancement 249 -- 14.6 Experimental emission enhancement and angular dependence 251 -- 15 Resonant-cavity light-emitting diodes 255 -- 15.1 Introduction and history 255 -- 15.2 RCLED design rules 256 -- 15.3 GaInAs/GaAs RCLEDs emitting at 930 nm 260 -- 15.4 AlGaInP/GaAs RCLEDs emitting at 650 nm 265 -- 15.5 Large-area photon recycling LEDs 268 -- 15.6 Thresholdless lasers 270 -- 15.7 Other RCLED devices 271 -- 15.8 Other novel confined-photon emitters 272 -- 16 Human eye sensitivity and photometric qualities 275 -- 16.1 Light receptors of the human eye 275 -- 16.2 Basic radiometric and photometric units 277 -- 16.3 Eye sensitivity function 280 -- 16.4 Colors of near-monochromatic emitters 283 -- 16.5 Luminous efficacy and luminous efficiency 284 -- 16.6 Brightness and linearity of human vision 286 -- 16.7 Circadian rhythm and circadian sensitivity 287 -- Appendix 16.1 Photopic eye sensitivity function 290 -- Appendix 16.2 Scotopic eye sensitivity function 291 -- 17 Colorimetry 292 -- 17.1 Color-matching functions and chromaticity diagram 292 -- 17.2 Color purity 300 -- 17.3 LEDs in the chromaticity diagram 301 -- 17.4 Relationship between chromaticity and color 302 -- Appendix 17.1 Color-matching functions (CIE 1931) 304 -- Appendix 17.2 Color-matching functions (CIE 1978) 305 -- 18 Planckian sources and color temperature 306 -- 18.1 Solar spectrum 306 -- 18.2 Planckian spectrum 307 -- 18.3 Color temperature and correlated color temperature 309 -- Appendix 18.1 Planckian emitter 312 -- 19 Color mixing and color rendering 313 -- 19.1 Additive color mixing 313 -- 19.2 Color rendering 315 -- 19.3 Color-rendering index for planckian-locus illumination sources 323 -- 19.4 Color-rendering index for non-planckian-locus illumination sources 324 -- Appendix 19.1 Reflectivity of test-color samples 328 -- Appendix 19.2 Reflectivity of test-color samples 330 -- 20 White-light sources based on LEDs 332 -- 20.1 Generation of white light with LEDs 332 -- 20.2 Generation of white light by dichromatic sources 333 -- 20.3 Generation of white light by trichromatic sources 338 -- 20.4 Temperature dependence of trichromatic LED-based white-light source 340 -- 20.5 Generation of white light by tetrachromatic and pentachromatic sources 344 -- 21 White-light sources based on wavelength converters 346 -- 21.1 Efficiency of wavelength-converter materials 347 -- 21.2 Wavelength-converter materials 349 -- 21.3 Phosphors 351 -- 21.4 White LEDs based on phosphor converters 353 -- 21.5 Spatial phosphor distributions 355 -- 21.6 UV-pumped phosphor-based white LEDs 357 -- 21.7 White LEDs based on semiconductor converters (PRS-LED) 358 -- 21.8 Calculation of the power ratio of PRS-LED 359 -- 21.9 Calculation of the luminous efficiency of PRS-LED 361 -- 21.10 Spectrum of PRS-LED 363 -- 21.11 White LEDs based on dye converters 364 -- 22 Optical communication 367 -- 22.1 Types of optical fibers 367 -- 22.2 Attenuation in silica and plastic optical fibers 369 -- 22.3 Modal dispersion in fibers 371 -- 22.4 Material dispersion in fibers 372 -- 22.5 Numerical aperture of fibers 374 -- 22.6 Coupling
with lenses 376 -- 22.7 Free-space optical communication 379 -- 23 Communication LEDs 382 -- 23.1 LEDs for free-space communication 382 -- 23.2 LEDs for fiber-optic communication 382 -- 23.3 Surface-emitting Burrus-type communication LEDs emitting at 870 nm 383 -- 23.4 Surface-emitting communication LEDs emitting at 1300 nm 384 -- 23.5 Communication LEDs emitting at 650 nm 386 -- 23.6 Edge-emitting superluminescent diodes (SLDs) 388 --
24 LED modulation characteristics 393 -- 24.1 Rise and fall times, 3 dB frequency, and bandwidth in linear circuit theory 393 -- 24.2 Rise and fall time in the limit of large diode capacitance 395 -- 24.3 Rise and fall time in the limit of small diode capacitance 396 -- 24.4 Voltage dependence of the rise and fall times 397 -- 24.5 Carrier sweep-out of the active region 399 -- 24.6 Current shaping 400 -- 24.7 3 dB frequency 401 -- 24.8 Eye diagram 401 -- 24.9 Carrier lifetime and 3 dB frequency 402 -- Appendix 1 Frequently used symbols 404 -- Appendix 2 Physical constants 408 -- Appendix 3 Room temperature properties of III-V arsenides 409 -- Appendix 4 Room temperature properties of III-V nitrides 410 -- Appendix 5 Room temperature properties of III-V phosphides 411 -- Appendix 6 Room temperature properties of Si and Ge 412 -- Appendix 7 Periodic system of elements (basic version) 413 -- Appendix 8 Periodic system of elements (detailed version) 414.
Subject Light emitting diodes.
Standard Number 9780521865388
ISBN 0521865387