My Library

University LibraryCatalogue

     
Limit search to items available for borrowing or consultation
Result Page: Previous Next
Can't find that book? Try BONUS+
 
Look for full text

Search Discovery

Search CARM Centre Catalogue

Search Trove

Add record to RefWorks

Cover Art
PRINTED BOOKS
Author Maniktala, Sanjaya.

Title Switching power supply design & optimization / Sanjaya Maniktala.

Published New York : McGraw-Hill, [2005]
©2005

Copies

Location Call No. Status
 UniM Store Engin  621.381044 MANI    AVAILABLE
Physical description xvi, 395 pages : illustrations ; 24 cm.
Series McGraw-Hill professional engineering. Electronic engineering.
McGraw-Hill professional engineering. Electronic engineering.
Contents 1.2 Voltseconds Law 3 -- 1.3 Basic Waveform Analysis 4 -- 1.4 R and K of the Current Waveform 7 -- 1.5 Basic Design Procedure for Inductors 9 -- 1.6 Calculating RMS Current for Capacitors 10 -- 1.7 Topologies and Worst-Case Capacitor Currents 11 -- 1.8 Worst-Case Input Voltage for a Power Supply 13 -- 1.9 Using Too High an Inductance (small r) 15 -- 1.10 Flat-Top Approximation 16 -- 1.11 Tolerance of Set Output Voltage 20 -- 1.12 Preferred Resistor Values 23 -- 1.13 Optimum Divider Selection 25 -- Chapter 2. DC-DC Converters and Their Configurations 31 -- 2.2 What is Ground? 32 -- 2.3 N-switch and P-switch 33 -- 2.4 LSD Cell 34 -- 2.5 Configurations of Switching Regulator Topologies 36 -- 2.6 Basic Types of Switcher ICs 38 -- 2.7 Flyback/Buck-Boost/Boost ICs Compared 40 -- 2.8 Other Possible Applications of Buck and Buck-Boost ICs 42 -- 2.9 Some Practical Cases 51 -- 2.10 Differential Voltage Sensing 55 -- 2.11 Some Topology Nuances 56 -- 2.12 Composite Topologies 58 -- Chapter 3. Reference Equations and Graphs for Converter Design 61 -- 3.1 Defining Difference between the Topologies 61 -- 3.2 Definition of Current Ripple Ratio 61 -- 3.3 Graphical Tools for Inductor Selection 62 -- 3.4 Design Equations Table 66 -- Chapter 4. Discontinuous Conduction Mode Equations 69 -- 4.2 How DCM Equations Are Calculated 71 -- 4.3 Duty Cycle Equations 75 -- Chapter 5. Front-End of Off-Line Power Supplies 77 -- 5.1 Conventional Front-End Design 77 -- 5.2 Front-End with PFC 87 -- Chapter 6. Isolated Topologies for Off-line Applications 109 -- 6.1 Forward Converter 109 -- 6.2 Flyback Topology 114 -- Chapter 7. Concepts in Magnetics 153 -- 7.1 Basic Magnetic Concepts and Definitions (MKS Units) 153 -- 7.2 Inductor Equation 154 -- 7.3 Voltage-Independent Equation 155 -- 7.4 Voltage-Dependent Equation 157 -- 7.5 Units in Magnetics 161 -- 7.6 Magnetomotive Force (mmf) Equation 163 -- 7.7 Effective Area and Effective Length 165 -- 7.8 Effect of the Air Gap 166 -- 7.9 Gap Factor z 168 -- 7.10 Origin and Significance of z 169 -- 7.11 Relating B to H 171 -- 7.12 E-cores 171 -- 7.13 Energy Storage Considerations 172 -- 7.14 How an Air Gap Helps 176 -- 7.15 Understanding L 178 -- 7.16 Difference between an Inductor and (Flyback) Transformer 180 -- 7.17 Transformers 181 -- 7.18 Fringing Flux Correction 185 -- Chapter 8. Tapped-Inductor Topologies 191 -- 8.1 Tapped-Inductor Buck 191 -- 8.2 Other Tapped-Inductor Stages and Duty Cycle 196 -- Chapter 9. Selecting Inductors for DC-DC Converters 199 -- 9.2 Specifying the Current Ripple Ratio r 202 -- 9.3 Mapping the Inductor 203 -- 9.4 Voltseconds 204 -- 9.5 Choosing r and L 205 -- 9.6 B in Terms of Current 208 -- 9.7 A Feel for Core Loss Optimization by Understanding Variations 210 -- 9.9 Choosing an Inductor 215 -- 9.10 Evaluating the Inductor in Our Application 216 -- Chapter 10. Flyback Transformer Design 223 -- 10.1 Design Equations 223 -- 10.3 Some Finer Points of Optimization 230 -- 10.4 Rule of Thumb for Quick Selection of Flyback Transformer Cores 231 -- 10.6 Circular mils (cmils) 234 -- 10.7 Current Carrying Capacity of Wires 235 -- 10.8 Skin Depth 237 -- 10.9 A Feel for Wire Gauges 242 -- 10.10 Diameter of Coated Wire 244 -- 10.11 SWG Comparison 245 -- Chapter 11. Forward Converter Magnetics Design 249 -- 11.2 Transformer and Choke Compared 249 -- 11.3 Introducing the Proximity Effect 253 -- 11.4 More about Skin Depth 254 -- 11.5 Dowell's Equations 256 -- 11.6 Equivalent Foil Transformation 263 -- 11.7 Some Useful Equations for Quick Selection of Forward Converter Cores 265 -- 11.8 Stacking Wires and Bundles 268 -- 11.9 Core Loss Calculations 269 -- Chapter 12. PCBs and Layout 273 -- 12.2 Trace Analysis 273 -- 12.4 Routing the Feedback Trace 279 -- 12.5 Ground Plane 280 -- 12.6 Some Manufacturing Issues 282 -- 12.7 PCB Vendors and Gerber Files 285 -- Chapter 13. Thermal Management 287 -- 13.2 Thermal Measurements and Efficiency Estimates 288 -- 13.3 Equations of Natural Convection 290 -- 13.4 Historical Definitions 291 -- 13.5 Available Equations 292 -- 13.6 Manipulating the Equations 294 -- 13.7 Comparing the Two Standard Equations 295 -- 13.8 h from Thermodynamic Theory 296 -- 13.9 Working with the Tables of the Standard Equations 297 -- 13.10 PCBs for Heatsinking 301 -- 13.11 Natural Convection at an Altitude 303 -- 13.12 Forced Air Cooling 303 -- 13.13 Radiative Heat Transfer 305 -- Chapter 14. Stabilizing Current Mode Converters 309 -- 14.2 Why Slope Compensation? 312 -- 14.3 Generalized Rule for Avoiding Subharmonic Instability 316 -- Chapter 15. Practical EMI Filter Design 319 -- 15.1 CISPR 22 Standard 319 -- 15.2 LISN 320 -- 15.3 Fourier Series 321 -- 15.4 Trapezoid 322 -- 15.5 Practical DM Filter Design 323 -- 15.6 Practical CM Filter Design 326 -- Chapter 16. Things to Try 331 -- 16.2 Synchronizing two 3844 ICs 331 -- 16.3 A Self-Oscillating Low-Cost Standby/Auxiliary Power Supply 332 -- 16.4 An Adapter with Battery Charging Function 334 -- 16.5 Paralleling Bridge Rectifiers 335 -- 16.6 Self-Contained Inrush Protection Circuit 335 -- 16.7 Cheap Power Good Signal 336 -- 16.8 An Overcurrent Protection Circuit 336 -- 16.9 Another Overcurrent Protection Circuit 337 -- 16.10 Adding Overtemperature Protection to the 384x Series 337 -- 16.11 Turn-On Snubber for PFC 338 -- 16.12 A Unique Active Inrush Protection Circuit 339 -- 16.13 Floating Drive from a 384x Controller 340 -- 16.14 Floating Buck Topology 340 -- 16.15 Symmetrical Boost Topology 341 -- 16.16 A Slave Converter 342 -- 16.17 A Boost Preregulator with a Regulated Auxiliary Output 343 -- Chapter 17. Reliability, Testing, and Safety Issues 345 -- 17.2 Reliability Definitions 345 -- 17.3 Chi-Square Distribution 347 -- 17.4 Chargeable Failures 349 -- 17.5 Warranty Costs 350 -- 17.6 Calculating Reliability 351 -- 17.7 Testing and Qualifying Power Supplies 352 -- 17.8 Safety Issues 354 -- 17.9 Calculating Working Voltage 357 -- 17.10 Estimating Capacitor Life 361 -- 17.11 Safety Restrictions on the Total Y-Capacitance 369 -- 17.12 Safety and the 5-cent Zener 370.
Summary The design of switching power supplies has become one of the most crucial aspects of electronics, particularly in the fast-growing market for portable devices. Whether you're a newcomer to power supply design or an experienced hand, this book belongs on your shelves. Rigorous and carefully explained, expert Sanjaya Maniktala's Switching Power Supply Design and Optimization gives you both a practical tutorial and a handy quick reference.
Subject Switching power supplies.
Electronic apparatus and appliances -- Power supply.
Electric current converters.
ISBN 0071434836