My Library

University LibraryCatalogue

For faster,
simpler
access.
Use Lean
Library.
Get it now
Don't show me again
     
Limit search to items available for borrowing or consultation
Result Page: Previous Next
Can't find that book? Try BONUS+
 
Look for full text

Search Discovery

Search CARM Centre Catalogue

Search Trove

Add record to RefWorks

Cover Art
PRINTED BOOKS
Author Das, J. C., 1934-

Title Power system analysis : short-circuit load flow and harmonics / J.C. Das.

Published New York : Marcel Dekker, 2002.

Copies

Location Call No. Status
 UniM Store Engin  621.310151 DAS    AVAILABLE
Physical description xiv, 850 pages : illustrations ; 26 cm.
Series Power engineering ; 16.
Power engineering ; 16.
Bibliography Includes bibliographical references and index.
Contents 1. Short-Circuit Currents and Symmetrical Components 1 -- 1.1 Nature of Short-Circuit Currents 2 -- 1.2 Symmetrical Components 5 -- 1.3 Eigenvalues and Eigenvectors 8 -- 1.4 Symmetrical Component Transformation 9 -- 1.5 Clarke Component Transformation 15 -- 1.6 Characteristics of Symmetrical Components 16 -- 1.7 Sequence Impedance of Network Components 20 -- 1.8 Computer Models of Sequence Networks 35 -- 2. Unsymmetrical Fault Calculations 39 -- 2.1 Line-to-Ground Fault 40 -- 2.2 Line-to-Line Fault 42 -- 2.3 Double Line-to-Ground Fault 43 -- 2.4 Three-Phase Fault 45 -- 2.5 Phase Shift in Three-Phase Transformers 46 -- 2.6 Unsymmetrical Fault Calculations 53 -- 2.7 System Grounding and Sequence Components 61 -- 2.8 Open Conductor Faults 64 -- 3. Matrix Methods for Network Solutions 72 -- 3.1 Network Models 73 -- 3.2 Bus Admittance Matrix 73 -- 3.3 Bus Impedance Matrix 78 -- 3.4 Loop Admittance and Impedance Matrices 81 -- 3.5 Graph Theory 82 -- 3.6 Bus Admittance and Impedance Matrices by Graph Approach 86 -- 3.7 Algorithms for Construction of Bus Impedance Matrix 89 -- 3.8 Short-Circuit Calculations with Bus Impedance Matrix 103 -- 3.9 Solution of Large Network Equations 113 -- 4. Current Interruption in AC Networks 116 -- 4.1 Rheostatic Breaker 117 -- 4.2 Current-Zero Breaker 118 -- 4.3 Transient Recovery Voltage 120 -- 4.4 Terminal Fault 125 -- 4.5 Short-Line Fault 127 -- 4.6 Interruption of Low Inductive Currents 127 -- 4.7 Interruption of Capacitive Currents 130 -- 4.8 Prestrikes in Breakers 133 -- 4.9 Overvoltages on Energizing High-Voltage Lines 134 -- 4.10 Out-of-Phase Closing 136 -- 4.11 Resistance Switching 137 -- 4.12 Failure Modes of Circuit Breakers 139 -- 5. Application and Ratings of Circuit Breakers and Fuses According to ANSI Standards 145 -- 5.1 Total and Symmetrical Current Rating Basis 145 -- 5.2 Asymmetrical Ratings 147 -- 5.3 Voltage Range Factor K 148 -- 5.4 Capabilities for Ground Faults 148 -- 5.5 Closing-Latching-Carrying Interrupting Capabilities 149 -- 5.6 Short-Time Current Carrying Capability 153 -- 5.7 Service Capability Duty Requirements and Reclosing Capability 153 -- 5.8 Capacitance Current Switching 155 -- 5.9 Line Closing Switching Surge Factor 160 -- 5.10 Out-of-Phase Switching Current Rating 162 -- 5.11 Transient Recovery Voltage 163 -- 5.12 Low-Voltage Circuit Breakers 168 -- 5.13 Fuses 173 -- 6. Short-Circuit of Synchronous and Induction Machines 179 -- 6.1 Reactances of a Synchronous Machine 180 -- 6.2 Saturation of Reactances 182 -- 6.3 Time Constants of Synchronous Machines 183 -- 6.4 Synchronous Machine Behavior on Terminal Short-Circuit 183 -- 6.5 Circuit Equations of Unit Machines 194 -- 6.6 Park's Transformation 198 -- 6.7 Park's Voltage Equation 202 -- 6.8 Circuit Model of Synchronous Machines 203 -- 6.9 Calculation Procedure and Examples 204 -- 6.10 Short-Circuit of an Induction Motor 214 -- 7. Short-Circuit Calculations According to ANSI Standards 219 -- 7.1 Types of Calculations 219 -- 7.2 Impedance Multiplying Factors 220 -- 7.3 Rotating Machines Model 222 -- 7.4 Types and Severity of System Short-Circuits 222 -- 7.5 Calculation Methods 223 -- 7.6 Network Reduction 231 -- 7.7 Breaker Duty Calculations 233 -- 7.8 High X/R Ratios (DC Time Constant Greater than 45ms) 233 -- 7.9 Calculation Procedure 235 -- 7.10 Examples of Calculations 236 -- 7.11 Thirty-Cycle Short-Circuit Currents 261 -- 7.12 Dynamic Simulation 262 -- 8. Short-Circuit Calculations According to IEC Standards 267 -- 8.1 Conceptual and Analytical Differences 267 -- 8.2 Prefault Voltage 271 -- 8.3 Far-From-Generator Faults 271 -- 8.4 Near-to-Generator Faults 275 -- 8.5 Influence of Motors 281 -- 8.6 Comparison with ANSI Calculation Procedures 283 -- 8.7 Examples of Calculations and Comparison with ANSI Methods 285 -- 9. Calculations of Short-Circuit Currents in DC Systems 302 -- 9.1 DC Short-Circuit Current Sources 303 -- 9.2 Calculation Procedures 304 -- 9.3 Short-Circuit of a Lead Acid Battery 306 -- 9.4 DC Motor and Generators 312 -- 9.5 Short-Circuit Current of a Rectifier 318 -- 9.6 Short-Circuit of a Charged Capacitor 324 -- 9.7 Total Short-Circuit Current 325 -- 9.8 DC Circuit Breakers 326 -- 10. Load Flow Over Power Transmission Lines 328 -- 10.1 Power in AC Circuits 329 -- 10.2 Power Flow in a Nodal Branch 331 -- 10.3 ABCD Constants 334 -- 10.4 Transmission Line Models 336 -- 10.5 Tuned Power Line 345 -- 10.6 Ferranti Effect 346 -- 10.7 Symmetrical Line at No Load 347 -- 10.8 Illustrative Examples 349 -- 10.9 Circle Diagrams 352 -- 10.10 System Variables in Load Flow 356 -- 11. Load Flow Methods 360 -- 11.1 Modeling a Two-Winding Transformer 361 -- 11.2 Load Flow, Bus Types 366 -- 11.3 Gauss and Gauss-Seidel Y-Matrix Methods 367 -- 11.4 Convergence in Jacobi-Type Methods 377 -- 11.5 Gauss-Seidel Z-Matrix Method 383 -- 11.6 Conversion of Y to Z Matrix 384 -- 12.1 Function with One Variable 391 -- 12.2 Simultaneous Equations 393 -- 12.3 Rectangular Form of Newton-Raphson Method of Load Flow 395 -- 12.4 Polar Form of Jacobian Matrix 397 -- 12.5 Simplifications of Newton-Raphson Method 405 -- 12.6 Decoupled Newton-Raphson Method 408 -- 12.7 Fast Decoupled Load Flow 408 -- 12.8 Model of a Phase-Shifting Transformer 411 -- 12.9 DC Models 413 -- 12.10 Load Models 415 -- 12.11 Impact Loads and Motor Starting 422 -- 12.12 Practical Load Flow Studies 424 -- 13. Reactive Power Flow and Control 435 -- 13.1 Voltage Instability 436 -- 13.2 Reactive Power Compensation 442 -- 13.3 Reactive Power Control Devices 447 -- 13.4 Some Examples of Reactive Power Flow 460 -- 13.5 FACTS 467 -- 14. Three-Phase and Distribution System Load Flow 478 -- 14.1 Phase Co-Ordinate Method 479 -- 14.2 Three-Phase Models 481 -- 14.3 Distribution System Load Flow 491 -- 15. Optimization Techniques 500 -- 15.1 Functions of One Variable 501 -- 15.2 Concave and Convex Functions 502 -- 15.3 Taylor's Theorem 503 -- 15.4 Lagrangian Method, Constrained Optimization 505 -- 15.5 Multiple Equality Constraints 507 -- 15.6 Optimal Load Sharing Between Generators 508 -- 15.7 Inequality Constraints 510 -- 15.8 Kuhn-Tucker Theorem 511 -- 15.9 Search Methods 512 -- 15.10 Gradient Methods 514 -- 15.11 Linear Programming--Simplex Method 516 -- 15.12 Quadratic Programming 521 -- 15.13 Dynamic Programming 521 -- 15.14 Integer Programming 523 -- 16. Optimal Power Flow 525 -- 16.1 Optimal Power Flow 525 -- 16.2 Decoupling Real and Reactive OPF 527 -- 16.3 Solution Methods of OPF 528 -- 16.4 Generation Scheduling Considering Transmission Losses 528 -- 16.5 Steepest Gradient Method 536 -- 16.6 OPF Using Newton's Method 539 -- 16.7 Successive Quadratic Programming 545 -- 16.8 Successive Linear Programming 545 -- 16.9 Interior Point Methods and Variants 547 -- 16.10 Security and Environmental Constrained OPF 551 -- 17. Harmonics Generation 554 -- 17.1 Harmonics and Sequence Components 556 -- 17.2 Increase in Nonlinear Loads 557 -- 17.3 Harmonic Factor 557 -- 17.4 Three-Phase Windings in Electrical Machines 557 -- 17.5 Tooth Ripples in Electrical Machines 559 -- 17.6 Synchronous Generators 560 -- 17.7 Transformers 560 -- 17.8 Saturation of Current Transformers 564 -- 17.9 Shunt Capacitors 565 -- 17.10 Subharmonic Frequencies 565 -- 17.11 Static Power Converters 566 -- 17.12 Switch-Mode Power (SMP) Supplies 581 -- 17.13 Arc Furnaces 582 -- 17.14 Cycloconverters 584 -- 17.15 Thyristor-Controlled Factor 586 -- 17.16 Thyristor-Switched Capacitors 588 -- 17.17 Pulse Width Modulation 588 -- 17.18 Adjustable Speed Drives 591 -- 17.19 Pulse burst Modulation 591 -- 17.20 Chopper Circuits and Electric Traction 592 -- 17.21 Slip Frequency Recovery Schemes 594 -- 17.22 Lighting Ballasts 594 -- 17.23 Interharmonics 595 -- 18. Effects of Harmonics 597 -- 18.1 Rotating Machines 598 -- 18.2 Transformers 603 -- 18.3 Cables 607 -- 18.4 Capacitors 608 -- 18.5 Harmonic Resonance 609 -- 18.6 Voltage Notching 613 -- 18.7 EMI
(Electromagnetic Interference) 613 -- 18.8 Overloading of Neutral 614 -- 18.9 Protective Relays and Meters 615 -- 18.10 Circuit Breakers and Fuses 615 -- 18.11 Telephone Influence Factor 616 -- 19. Harmonic Analysis 619 -- 19.1 Harmonic Analysis Methods 620 -- 19.2 Harmonic Modeling of System Components 626 -- 19.3 Load Models 630 -- 19.4 System Impedance 630 -- 19.5 Three-Phase Models 631 -- 19.6 Modeling of Networks 633 --
19.7 Power Factor and Reactive Power 637 -- 19.8 Shunt Capacitor Bank Arrangements 640 -- 20. Harmonic Mitigation and Filters 664 -- 20.1 Mitigation of Harmonics 664 -- 20.2 Band Pass Filters 665 -- 20.3 Practical Filter Design 668 -- 20.4 Relations in a ST Filter 678 -- 20.5 Filters for a Furnace Installation 681 -- 20.6 Filters for an Industrial Distribution System 683 -- 20.7 Secondary Resonance 684 -- 20.8 Filter Reactors 686 -- 20.9 Double-Tuned Filter 687 -- 20.10 Damped Filters 689 -- 20.11 Design of a Second-Order High-Pass Filter 693 -- 20.12 Zero Sequence Traps 694 -- 20.13 Limitations of Passive Filters 696 -- 20.14 Active Filters 698 -- 20.15 Corrections in Time Domain 701 -- 20.16 Corrections in the Frequency Domain 702 -- 20.17 Instantaneous Reactive Power 704 -- 20.18 Harmonic Mitigation at Source 706 -- Appendix A Matrix Methods 712 -- A.2 Characteristics Roots, Eigenvalues, and Eigenvectors 716 -- A.3 Diagonalization of a Matrix 718 -- A.4 Linear Independence or Dependence of Vectors 719 -- A.5 Quadratic Form Expressed as a Product of Matrices 719 -- A.6 Derivatives of Scalar and Vector Functions 720 -- A.7 Inverse of a Matrix 721 -- A.8 Solution of Large Simultaneous Equations 725 -- A.9 Crout's Transformation 727 -- A.10 Gaussian Elimination 729 -- A.11 Forward-Backward Substitution Method 730 -- A.12 LDU (Product Form, Cascade, or Choleski Form) 733 -- Appendix B Calculation of Line and Cable Constants 736 -- B.1 AC Resistance 736 -- B.2 Inductance 736 -- B.3 Impedance Matrix 739 -- B.4 Three-Phase Line with Ground Conductors 739 -- B.5 Bundle Conductors 741 -- B.6 Carson's Formula 742 -- B.7 Capacitance of Lines 748 -- B.8 Cable Constants 751 -- Appendix C Transformers and Reactors 756 -- C.1 Model of a Two-Winding Transformer 756 -- C.2 Transformer Polarity and Terminal Connections 761 -- C.3 Parallel Operation of Transformers 763 -- C.4 Autotransformers 765 -- C.5 Step-Voltage Regulators 770 -- C.6 Extended Models of Transformers 770 -- C.7 High-Frequency Models 776 -- C.8 Duality Models 776 -- C.9 GIC Models 779 -- C.10 Reactors 780 -- Appendix D Sparsity and Optimal Ordering 784 -- D.1 Optimal Ordering 784 -- D.2 Flow Graphs 785 -- D.3 Optimal Ordering Schemes 788 -- Appendix E Fourier Analysis 792 -- E.1 Periodic Functions 792 -- E.2 Orthogonal Functions 792 -- E.3 Fourier Series and Coefficients 792 -- E.4 Odd Symmetry 795 -- E.5 Even Symmetry 795 -- E.6 Half-Wave Symmetry 796 -- E.7 Harmonic Spectrum 797 -- E.8 Complex Form of Fourier Series 799 -- E.9 Fourier Transform 800 -- E.10 Sampled Waveform: Discrete Fourier Transform 803 -- E.11 Fast Fourier Transform 807 -- Appendix F Limitation of Harmonics 809 -- F.1 Harmonic Current Limits 809 -- F.2 Voltage Quality 811 -- F.3 Commutation Notches 813 -- F.4 Interharmonics 816 -- F.5 Flicker 817 -- Appendix G Estimating Line Harmonics 819 -- G.1 Waveform without Ripple Content 819 -- G.2 Waveform with Ripple Content 821 -- G.3 Phase Angle of Harmonics 827.
Summary This text presents extensive calculations of short-circuit currents in AC and DC systems. It combines theoretical and practical aspects of load flow and harmonic analyses to provide a sound knowledge base for modern computer-based studies that can be utilized in real-world applications.
Subject Electric power systems -- Mathematical models.
Electric power system stability.
System analysis.
ISBN 0824707370