My Library

University LibraryCatalogue

LEADER 00000nam a2200409 a 4500 
001    000022228151 
005    20010131162511.0 
008    010122t20002000enka          001 0 eng   
015    GBA1-7740 
019 1  22228151 
020    0852967942|cNo price 
035    .b26458743 
040    Uk|beng|dUk 
082 04 621.381331|221 
100 1  Helszajn, J.|q(Joseph)|0
245 10 Ridge waveguides and passive microwave components /|cJ. 
264  1 London :|bIEE,|c[2000] 
264  4 |c©2000 
300    xiv, 327 pages :|billustrations ;|c25 cm. 
336    text|btxt|2rdacontent 
337    unmediated|bn|2rdamedia 
338    volume|bnc|2rdacarrier 
490 1  IEE electromagnetic waves series ;|v49. 
504    Includes bibliographical references and index. 
505 00 |g1|tRidge waveguide|g1 --|g1.2|tCut-off space of ridge 
       waveguide|g1 --|g1.3|tImpedance of ridge waveguide|g3 --
       |g1.4|tAttenuation of ridge waveguide|g4 --|g1.5|tRidge 
       waveguide junctions|g5 --|g1.6|tWaveguide transitions|g10 
       --|g1.7|tFilter circuits|g11 --|g1.8|tTurnstile junction 
       circulator|g11 --|g2|tPropagation and impedance in 
       rectangular waveguides|g13 --|g2.2|tWave equation|g13 --
       |g2.3|tDominant mode in rectangular waveguides|g14 --|g2.4
       |tImpedance in waveguides|g15 --|g2.5|tPower transmission 
       through rectangular waveguides|g17 --|g2.6|tImpedance in 
       rectangular waveguides|g18 --|g2.7|tCircular polarisation 
       in rectangular waveguides|g19 --|g2.8|tCalculation of 
       impedance based on a mathematical technique|g22 --|g2.9
       |tOrthogonal properties of waveguide modes|g24 --|g3
       |tImpedance and propagation in ridge waveguides using the 
       transverse resonance method / |rJ. Helszajn, M. Caplin|g26
       --|g3.2|tCut-off space of ridge waveguide|g26 --|g3.3
       |tPower flow in ridge waveguide|g31 --|g3.4|tVoltage-
       current definition of impedance in ridge waveguide|g31 --
       |g3.5|tPower-voltage definition of impedance in ridge 
       waveguide|g32 --|g3.6|tPower-current definition of 
       impedance in ridge waveguide|g33 --|g3.7|tAdmittances of 
       double ridge waveguide|g34 --|g3.8|tClosed form 
       polynomials for single and double ridge waveguides|g35 --
       |g3.9|tSynthesis of quarter-wave ridge transformers|g38 --
       |g4|tFields, propagation and attenuation in double ridge 
       waveguide|g47 --|g4.2|tFinite element calculation (TE 
       modes)|g47 --|g4.3|tFinite element method (TM modes)|g50 -
       -|g4.4|tCut-off space (TE mode)|g50 --|g4.5|tStanding wave
       solution in double ridge waveguide|g52 --|g4.6|tTE fields 
       in double ridge waveguide|g54 --|g4.7|tTM fields in double
       ridge waveguide|g56 --|g4.8|tMFIE|g59 --|g4.9|tPoynting 
       vector|g61 --|g4.10|tAttenuation in waveguides|g61 --|g5
       |tImpedance of double ridge waveguide using the finite 
       element method / |rJ. Helszajn, M. McKay|g63 --|g5.2
       |tVoltage-current definition of impedance|g64 --|g5.3
       |tCalculation of voltage-current definition of impedance
       |g66 --|g5.4|tPower-current and power-voltage definitions 
       of impedance|g67 --|g5.5|tImpedance of ridge waveguide 
       using trapezoidal ribs|g71 --|g6|tCharacterisation of 
       single ridge waveguide using the finite element method / 
       |rM. McKay, J. Helszajn|g73 --|g6.2|tCut-off space of 
       single ridge waveguide|g74 --|g6.3|tFields in single ridge
       waveguide|g75 --|g6.4|tImpedance of single ridge waveguide
       |g78 --|g6.5|tInsertion loss in single ridge waveguide|g79
       --|g6.6|tHigher order modes|g80 --|g7|tPropagation 
       constant and impedance of dielectric loaded ridge 
       waveguide using a hybrid finite element solver / |rM. 
       McKay, J. Helszajn|g83 --|g7.2|tHybrid functional|g84 --
       |g7.3|tCut-off space of dielectric loaded rectangular 
       ridge waveguide|g88 --|g7.4|tPropagation constant in 
       dielectric loaded rectangular ridge waveguide|g90 --|g7.5
       |tPropagation constant in dielectric loaded square 
       waveguide|g91 --|g7.6|tVoltage-current definition of 
       impedance|g92 --|g8|tCircular polarisation in ridge and 
       dielectric loaded ridge waveguides|g99 --|g8.2|tCircular 
       polarisation|g100 --|g8.3|tOpen half-space of 
       asymmetrically dielectric loaded ridge waveguide|g100 --
       |g8.4|tCircular polarisation in dielectric-loaded parallel
       plate waveguides with open side-walls|g102 --|g8.5
       |tCircular polarisation in dielectric loaded ridge 
       waveguide|g105 --|g8.6|tCircular polarisation in 
       homogeneous ridge waveguide|g107 --|g9|tQuadruple ridge 
       waveguide|g117 --|g9.2|tQuadruple ridge waveguide|g117 --
       |g9.3|tCut-off space in quadruple ridge waveguide using 
       MFIE method|g119 --|g9.4|tCut-off space of ridge waveguide
       using MMM|g121 --|g9.5|tCut-off space of quadruple ridge 
       waveguide using FEM|g121 --|g9.6|tFields in quadruple 
       ridge waveguide|g126 --|g9.7|tCut-off space of dielectric 
       loaded quadruple ridge waveguide|g127 --|g9.8|tImpedance 
       in quadruple ridge circular waveguide using conical ridges
       |g132 --|g10|tFaraday rotation in gyromagnetic quadruple 
       ridge waveguide|g134 --|g10.2|tFaraday rotation section
       |g135 --|g10.3|tScattering matrix of Faraday rotation 
       section|g138 --|g10.4|tGyrator network|g139 --|g10.5
       |tGyromagnetic waveguide functional|g141 --|g10.6|tRidge 
       waveguide using gyromagnetic ring|g144 --|g10.7|tQuadruple
       ridge waveguide using gyromagnetic tiles|g144 --|g10.8
       |tFaraday rotation isolator|g145 --|g10.9|tFour-port 
       Faraday rotation circulator|g148 --|g10.10|tNonreciprocal 
       Faraday rotation-type phase shifter|g148 --|g10.11
       |tFaraday rotation in dual-mode triple ridge waveguide
       |g149 --|g11|tCharacterisation of discontinuity effects in
       single ridge waveguide|g153 --|g11.2|tABCD parameters of 2
       -port step discontinuity|g154 --|g11.3|tFrequency response
       |g157 --|g11.4|tCharacterisation of half-wave long ridge 
       waveguide test-set|g157 --|g11.5|tExperimental 
       characterisation|g160 --|g11.6|tSymmetrical short section
       |g163 --|g12|tRidge cross-guide directional coupler / |rM.
       McKay, J. Helszajn|g170 --|g12.2|tOperation of cross-guide
       directional coupler|g170 --|g12.3|tBethe's small-hole 
       coupling theory|g173 --|g12.4|t0-degree crossed-slot 
       aperture|g175 --|g12.5|t0-degree crossed-slot aperture in 
       rectangular waveguide|g177 --|g12.6|t0-degree crossed-slot
       aperture in single ridge waveguide|g178 --|g12.7|t45-
       degree crossed-slot aperture|g179 --|g12.8|tCircular 
       polarisation in rectangular and ridge waveguides|g181 --
       |g12.9|tRectangular and ridge waveguide cross-guide 
       couplers using 45-degree crossed-slot apertures|g182 --
       |g12.10|tCoupling via waveguide walls of finite thickness
       |g184 --|g13|tDirectly coupled filter circuits using 
       immittance inverters|g189 --|g13.2|tImmittance inverters
       |g189 --|g13.3|tLowpass filters using immittance inverters
       |g190 --|g13.4|tBandpass filters using immittance 
       inverters|g193 --|g13.5|tImmittance inverters|g195 --
       |g13.6|tPractical inverter|g198 --|g13.7|tImmittance 
       inverters using evanescent mode waveguide|g200 --|g13.8|tE
       -plane filter|g201 --|g13.9|tElement values of lowpass 
       prototypes|g204 --|g13.10|tFrequency response of microwave
       filters|g205 --|g14|tRidge waveguide filter design using 
       mode matching method / |rM. McKay, J. 
505 00 |gHelszajn|g207 --|g14.2|tMode matching method|g207 --
       |g14.3|tMMM characterisation of 1-port networks|g212 --
       |g14.4|tDouble septa and thick septum problem regions|g215
       --|g14.5|tMMM characterisation of symmetrical waveguide 
       discontinuities|g216 --|g14.6|tEigensolutions of waveguide
       sections|g218 --|g14.7|tImmittance inverters|g221 --|g14.8
       |tE-plane bandpass filters using metal inverters|g221 --
       |g14.9|tLowpass ridge filters using immittance inverters
       |g222 --|g15|tNonreciprocal ridge isolators and phase-
       shifters|g226 --|g15.2|tNonreciprocal ferrite devices in 
       rectangular waveguide|g227 --|g15.3|tDifferential phase 
       shift, phase deviation and figure of merit of ferrite 
       phase shifter|g230 --|g15.4|t90-degree phase shifter in 
       dielectric loaded WRD 200 ridge waveguide|g231 --|g15.5
       |tIsolation, insertion loss and figure of merit of 
       resonance isolator|g233 --|g15.6|tResonance isolator in 
       dielectric loaded WRD 750 ridge waveguide|g234 --|g15.7
       |tResonance isolator in bifurcated ridge waveguide|g236 --
       |g15.8|tDifferential phase shift circulator|g238 --|g16
       |tFinline waveguide|g241 --|g16.2|tFinline waveguide 
       topologies|g241 --|g16.3|tNormalised wavelength and 
       impedance in finline|g242 --|g16.4|tEmpirical expressions 
       for propagation in bilateral and unilateral finline|g245 -
       -|g16.5|tFields in unilateral finline waveguide|g247 --
       |g16.6|tBilateral finline|g250 --|g16.7|tEmpirical 
       formulation of impedance in bilateral finline waveguide
       |g251 --|g16.8|tCircular polarisation in bilateral and 
       unilateral finline waveguides|g251 --|g16.9|tFinline 
       isolator using hexagonal ferrite substrate|g251 --|g17
       |tInverted turnstile finline junction circulator|g256 --
       |g17.2|tTurnstile junction circulator|g256 --|g17.3|tRe-
       entrant H-plane waveguide circulator|g261 --|g17.4|tRe-
       entrant E-plane waveguide circulator|g262 --|g17.5|tClosed
       gyromagnetic resonator|g262 --|g17.6|tPerturbation theory 
       of closed cyclindrical gyromagnetic resonator|g264 --
       |g17.7|tQuality factor of closed gyromagnetic resonator
       |g266 --|g17.8|tE-plane finline circulator using coupled H
       -plane turnstile resonators|g266 --|g17.9|tExperimental 
       adjustment of finline turnstile circulator|g268 --|g18
       |tSemi-tracking ridge circulator|g270 --|g18.2
       |tPhenomenological adjustment|g271 --|g18.3|tImpedance 
       matrix|g272 --|g18.4|tComplex gyrator circuit|g277 --
       |g18.5|tSemi-tracking complex gyrator circuit|g278 --
       |g18.6|tDirect magnetic field and magnetisation of semi-
       tracking circulators|g281 --|g18.7|tPhysical variables of 
       semi-tracking circulators|g285 --|g18.8|tNetwork problem
       |g285 --|g18.9|tFrequency response|g287 --|g18.10|tDesign 
       of octave-band semi-tracking circulators|g294 --|g19
       |tVariational calculus, functionals and the Rayleigh-Ritz 
       procedure|g296 --|g19.2|tStationary value of functional
       |g297 --|g19.3|tElectrical and magnetic energies in planar
       circuits|g298 -- 
505 80 |g19.4|tElectric and magnetic fields in planar circuits 
       with top and bottom electric walls|g299 --|g19.5
       |tDerivation of functional for planar isotropic circuits
       |g301 --|g19.6|tRayleigh-Ritz procedure|g303 --|g19.7
       |tField patterns|g305 --|g19.8|tDerivation of energy 
       functional based on a mathematical technique|g306. 
650  0 Electric filters, Passive.|0
650  0 Microwave circuits.|0
650  0 Microwave filters.|0
710 2  Institution of Electrical Engineers.|0
830  0 IEE electromagnetic waves series ;|0
907    .b26458743 
984    VU|cheld 
990    MARCIVE MELB 201906 
Location Call No. Status
 UniM Store Engin  621.381331 HELS    AVAILABLE