My Library

University LibraryCatalogue

     
Limit search to items available for borrowing or consultation
Result Page: Previous Next
Can't find that book? Try BONUS+
 
Look for full text

Search Discovery

Search CARM Centre Catalogue

Search Trove

Add record to RefWorks

PRINTED BOOKS
Author Heller, Eric Johnson.

Title Why you hear what you hear : an experiential approach to sound, music, and psychoacoustics / Eric J. Heller.

Published Princeton, N.J. : Princeton University Press, c2013.

Copies

Location Call No. Status
 UniM Southbank  612.85 Hel    AVAILABLE
Physical description xxviii, 590 p. : col. ill. ; 26 cm.
Bibliography Includes bibliographical references (p. 579-581) and index.
Contents I.Sound Itself -- 1.How Sound Propagates -- 1.1.Push and Pushback: Impedance -- What Is Impedance, Really? -- Antireflection Strategies -- Impedance and the Violin -- Bullwhip---The High Art of Impedance Matching -- Impedance Mismatches Are Not Always Bad -- Impedance of Masses and Springs Together -- Defining and Measuring Impedance -- 1.2.Impedance of Air -- 1.3.Propagation of Sound in Pipes -- Reflection of Sound at a Closed End -- Reflection of Sound at an Open End -- Reflection of Sound at the Junction of Different-diameter Pipes -- 2.Wave Phenomenology -- 2.1.Relation between Speed, Frequency, and Wavelength -- 2.2.Falloff with Distance from the Source -- Loudness Falloffwith Distance -- Ripple Simulation -- 2.3.Measuring the Speed of Sound -- Box 2.1 Father Marin Mersenne -- 2.4.Interference and Superposition -- Active Noise Cancellation---Deliberate Destructive Interference -- 2.5.Reflection -- Shiny and Matte -- 2.6.Refraction --
Contents note continued: 2.7.Diffraction -- Diffraction at an Edge -- Brush with the Law of Similarity -- Active Noise Reduction of Diffracted Sound -- 2.8.Schlieren Photography -- 2.9.Ray Tracing -- Corner (Retro-) Reflector -- Box 2.2 The SOFAR Channel -- 2.10.Measures of Sound Power -- Box 2.3 How Big? -- II.Analyzing Sound -- 3.Sound and Sinusoids -- 3.1.The Atom of Sound -- Building a Sine Wave -- 3.2.Sinusoidal Vibration -- The Velocity -- The Tuning Fork -- The Sound of a Sinusoid -- 3.3.The Pendulum -- 3.4.The Double Tuning Fork -- 3.5.Microscopes for Vibration -- 3.6.Spying on Conversations -- 3.7.Fourier Decomposition -- 3.8.Power Spectra -- 3.9.Periodic Functions -- 3.10.Aperiodic Signals and Vibrations -- 4.The Power of Autocorrelation -- 4.1.Obtaining Autocorrelation Functions -- Box 4.1 Autocorrelation Example: Temperature in Fairbanks -- 4.2.Autocorrelation and Power for a Sum of Sinusoids -- Getting the Autocorrelation -- Computing the Power Spectrum --
Contents note continued: 4.3.Autocorrelation for Any Signal -- Computing the Autocorrelation -- Autocorrelation by Color -- 4.4.Power Spectrum from a General Autocorrelation -- Power Spectrum by Color -- The Wiener-Khinchin Theorem -- 4.5.The Uncertainty Principle -- 4.6.Autocorrelation and the Chorus Effect -- 4.7.Noise and Autocorrelation -- Autocorrelation and Fast Echoes -- Masking Signals with Noise -- Box 4.2 Famous Fourier Transform Pairs -- 5.Sonograms -- 5.1.What Is a Sonogram? -- 5.2.Choosing Sonogram Parameters -- 6.Capturing and Re-creating Sound -- 6.1.Galileo---The First Recording? -- 6.2.Phonautograph---Sound Trace -- 6.3.Microphones and Loudspeakers -- 6.4.Sound Reproduction Fidelity -- The Problem of Head Movement and Visual Concordance -- The Edison Diamond Disc Phonograph -- 6.5.Digital Recording and Playback -- 6.6.Impulse Response and the Re-creation of a Soundspace -- III.Making Sound -- 7.Sources of Sound -- 7.1.Amplification without Active Amplifiers --
Contents note continued: Walls as Passive Amplifiers -- Reactive versus Resistive Forces -- 7.2.The Method of Images -- The 30-degree Wedge -- 7.3.The Horn -- Safi al-Din Gets It Right in the Thirteenth Century -- Low-frequency Piston Source -- Monopole Source in a Pipe -- Horns as Impedance Control -- The Mouth of the Horn -- The Shape of the Horn -- Box 7.1 The Exponential Horn -- Speaking Trumpets and Ear Trumpets -- Box 7.2 Horns through the Ages -- 7.4.The Siren -- Software Siren -- 7.5.Reciprocity of Sound Propagation -- 7.6.Law of Similarity -- 7.7.Dipole Sources -- Dipoles as Acoustical Short-circuiting -- Dipoles as Destructive Interference -- Example Dipole Sources -- Relative Phase of Loudspeakers -- Simulations of a Dipole Source -- Baffling a Dipole -- 7.8.Tuning Fork---A Quadrupole Source -- 7.9.Supersonic Sources -- Lightning and Thunder -- 7.10.Sound Launched by Surfaces -- Sound Launched by a Baffled Piston -- Building Up Larger Pistons from Small Ones --
Contents note continued: Force Goes in Phase with Velocity for Larger Pistons -- 7.11.Sound Launched by Surface-bending Waves -- Supersonic versus Subsonic Surface Waves -- The Critical Frequency -- Sound Radiation Pattern from Surface Waves -- Box 7.3 Seneca Guns and Cookie Cutters -- 7.12.Soundboards and Surface Sound Generation -- Box 7.4 The SST That Never Was -- 7.13.Thermophones---Sound without Vibration -- Box 7.5 Sound That Won't Leave -- 7.14.The (Many) Other Sources of Sound -- The 95 dB Sun Chips Bag -- 8.Making a Stretched String -- 8.1.Single Bead -- Tension and Force -- The Motion of the Bead -- 8.2.Two Beads -- Box 8.1 Working with Loaded String -- The Sinusoid Reigns Supreme -- 8.3.Three Beads -- 8.4.Combining Modes -- 8.5.More Beads -- The Sound and Spectrum of a Pluck -- Box 8.2 Spectrum for a Large Number of Beads -- 8.6.Putting Shape and Time Together -- 8.7.Combining Modes -- 8.8.Traveling Waves on the String -- Standing versus Traveling Waves --
Contents note continued: Fourier Again -- Ends and Boundaries -- Box 8.3 Experiment with Loaded String -- Periodic or Not? -- 8.9.The Imperfect String -- Weighted String -- Real Strings -- 8.10.Membranes as Stretched Bead-filament Systems -- 8.11.A Metal Chair -- 8.12.Decomposing Complex Vibrations -- Mersenne and Sauveur -- 9.Resonance Rules -- 9.1.Resonance and Constructive Interference -- Proximity Resonance Revisited -- Equivalent Viewpoints -- Generalizing Proximity Resonance to Any Constructive Addition -- Box 9.1 Echoes from Atoms -- 9.2.Definition of Driven Resonance -- Remote versus Local Sources: Reciprocity -- Multiple Sources -- Autonomous Systems -- Box 9.2 Resonance and the Divine Harmony -- 10.Damped and Driven Oscillation -- 10.1.Friction and Work -- 10.2.Friction and Decay -- Kicked Damped Oscillator -- 10.3.Quality Factor Q -- Equivalent Definitions of Q -- 10.4.Driving the Oscillator -- Frequency of the Driven System -- 10.5.Resonance --
Contents note continued: Phase of the Drive: Reactive versus Resistive Force -- Power near Resonance -- 10.6.Impedance and Forced Oscillation -- Power, Impedance, and Admittance -- Oscillator versus Wave Resonance -- Driving a String -- 10.7.Coupling of Two or More Oscillators -- Pure Modes -- Two Coupled Pendula of Different Frequency -- 10.8.Tug-of-War: Resonance versus Damping -- A Physical Model -- 11.Impulse Response -- 11.1.Impulse and Power -- Five Easy Cases -- Power and Echo -- 11.2.Average Power Theorem -- Caveat for Proximity Resonance -- 11.3.Sculpting a Power Spectrum -- Echo, Resonance, and Q -- The Pop of a Cork and Its Echoes -- Sculpting Principle for Any Signal -- 12.Impulse and Power for Complex Systems -- 12.1.Mode Density -- 12.2.Strength of Isolated Resonances -- 12.3.Impulse and Power Spectrum in an Open Wedge -- 12.4.High-Q Resonances: From Isolated to Densely Packed -- 12.5.Schroeder Frequency -- Power Fluctuations above the Schroeder Frequency --
Contents note continued: Statistics of the Fluctuations -- Statistics of the Wedge Spectrum -- 12.6.Is a Piano Soundboard Resonant? -- Reverberant, Not Resonant -- Foiling Short-circuiting -- 13.Helmholtz Resonators -- 13.1.How Helmholtz Resonators Work -- Box 13.1 Deriving the Helmholtz Mode Frequency -- The Ocarina: Size but Not Shape -- 13.2.Helmholtz Resonators and the Law of Similarity -- Higher Modes -- AdHominem Resonators -- 13.3.Phase and Power -- Preresonance -- Postresonance -- On Resonance -- 13.4.Resonance and Short-circuiting of Pairs of Resonators -- 13.5.Helmholtz Resonance Amplification of Sound -- Resonance and Reciprocity -- 13.6.Helmholtz Resonators at Work -- Resonators as Transducers for Sound -- Ported Loudspeakers -- Box 13.2 Sound Enhancement in Ancient Greece? -- Sound Attenuation -- Helmholtz Bass Traps -- Your Automobile as a Helmholtz Resonator -- 14.Sound Generation by Vortices and Turbulence -- 14.1.Vortex Streets -- Foppl Vortices --
Contents note continued: Wagging, Shedding, and Sound Generation -- 14.2.Resonant Vortex Shedding -- Entrainment -- Aeolian Harps Big and Small -- 14.3.Reynolds Number -- 14.4.Edge Tones -- 14.5.Whistling---Ring and Slit Vortices -- Instability and Sensitivity -- 14.6.What Is Happening in a Lip Whistle? -- Box 14.1 Experiment: Second Formant Resonance -- 14.7.Sound from Turbulence -- Jet Noise -- Turbulence: Fricatives and Speech -- Box 14.2 Experiment: Speech Turbulence -- 14.8.Other Sources of Noise -- Noise from Tires -- 15.Membranes and Shells -- 15.1.Networks of Strings -- 15.2.Stretched Membranes -- Box 15.1 Paul Falstad's Stretched Membrane Applets -- 15.3.Vibrations of Plates and Shells -- 15.4.Chladni and the Era of Modern Acoustics -- Box 15.2 Chladni and Napoleon -- 15.5.Baffling and Acoustic Short-circuiting -- 15.6.Bowing a Metal Plate -- 15.7.Belleplates -- 15.8.Kettle Drums -- IV.Musical Instruments -- 16.Wind Instruments --
Contents note continued: 16.1.Propagation of Sound in Pipes---Continued -- Resonance in Tubes---Colored Echoes -- Wall Losses -- Box 16.1 Experiment: Resonance Frequencies and Wall Losses in a Tube -- 16.2.Frequencies of Tube Modes -- Cylindrical Bore Tubes -- The Conical Bore -- The Inside-out Implosion -- 16.3.The Trumpet -- Partials versus Resonances -- Shaping the Trumpet's Timbre and Playing Qualities -- The Mouthpiece Does Triple Duty -- The Bell Does Triple Duty -- Box 16.2 Gatekeeper Resonance Effect -- The Trouble with Treble Boost -- Box 16.3 The Horn Function -- The Battle between Resonance and Wall Friction -- Power in the Upper Partials---Up or Down When a Bell Is Added? -- The Lip Reed -- Understanding Nonlinearities: Benade's Water Trumpet -- Playing the Resonances on a Trumpet -- Other Factors: Vocal Tract -- Valves and Intonation -- The Natural Trumpet -- 16.4.The Transverse Flute -- Impedance of a Flute -- The Flute Cork -- The Golden Flute --
Contents note continued: 16.5.The Clarinet -- Register Holes -- Toneholes -- 16.6.The Saxophone -- The Saxophone Mouthpiece -- 16.7.Blown Closed versus Blown Open -- Blown Closed -- Blown Open -- 16.8.The Importance of Vocal Tract Resonances to Wind Instruments -- Tract Resonances and Playability -- Bending Down -- 17.Voice -- 17.1.Tubes That Change Diameter or Shape -- Constriction Yielding a Helmholtz Resonator -- 17.2.The Source: Vocal Folds -- 17.3.Formants -- Getting Q for Your Vocal Tract -- 17.4.Sayonara Source-filter Model -- 17.5.Formants and Vowels -- 17.6.Formant Tuning in Singing -- Singer's Formant -- 17.7.Multiphonics---Playing Two Notes at Once -- 17.8.The Speaking Trumpet (Megaphone) Revisited -- 17.9.Helium and SF6 Voice -- 17.10.Vocal Disguise, Mimicry, and Gender Switching -- 17.11.Fricatives and Other Sounds -- 17.12.Organ Pipe---Vox Humana -- 18.Violin -- 18.1.Bowing, Stick-slip, and the Helmholtz Wave -- The Helmholtz Kink Wave --
Contents note continued: Nonlinear Cooperative Resonance -- Inharmonic Strings -- 18.2.The Bridge and the Bridge Hill -- Impulse on the Front Plate -- 18.3.Science and the Violin -- 18.4.Sound Radiation Patterns from a Violin -- 18.5.Strad or Bust? -- 18.6.The Helmholtz Air Mode -- 18.7.The Wolf -- 18.8.Summary of the Violin -- 18.9.Nondestructive Modifications -- Breakdown of the Helmholtz Wave -- 19.Piano -- 19.1.The Railsback Curve -- 19.2.Three Strings per Key -- 19.3.The Hammer -- Where Should the Hammer Hit the String? -- Shape, Mass, and Texture -- 19.4.Digital Piano -- 20.Hybrid Musical Instruments -- 20.1.Stroh Violin -- 20.2.Aeolian Harp -- 20.3.Tromba Marina -- 20.4.Instruments Based on Near-field Capture (NFC) -- The Marimba -- 20.5.Applying the NFC Mechanism -- Savart's Cup and Resonator -- Helmholtz Resonator Enhancement of a Tuning Fork -- Wind Chimes and the Javanese Angklung -- Other Hybrid and Unusual Musical Instruments -- V.Psychoacoustics and Music --
Contents note continued: 21.Mechanisms of Hearing -- 21.1.Anatomy of the Hearing System -- 21.2.Outer Ear: Direction Detection -- Repetition Resonances and Antiresonances (Peaks and Notches) -- 21.3.Middle Ear: Masterpiece of Impedance Transduction -- Lever Action -- 21.4.Inner Ear: Masterpiece of Detection -- Initial Frequency Sorting -- Transduction to Nerve Impulses -- Amplification and Sharpening -- Sending Data to the Auditory Cortex -- 21.5.The Blonic Ear -- Box 21.1 Resonance and the Ear -- 22.Loudness -- 22.1.Fechner's (Weber's) Law -- 22.2.Equal Loudness Curves -- 22.3.Masking -- 22.4.Measuring Loudness -- 23.Pitch Perception -- 23.1.Overview -- 23.2.Pitch Is Not Partial -- 23.3.Pitch Is Not Periodicity -- 23.4.Pitched Battles -- 23.5.The Siren -- 23.6.Ohm's Law -- 23.7.Seebeck's Mistake -- 23.8.Ohm's Blunder -- 23.9.Helmholtz Falls Short -- 23.10.A Dramatic Residue Pitch Effect -- Truth or Illusion? -- 23.11.Autocorrelation and Pitch --
Contents note continued: 23.12.A Simple Formula for Pitch -- 23.13.Examples: Autocorrelation and Pitch -- 23.14.Seebeck's Pitch Experiments -- The Marquee Effect -- 23.15.Shepard Tones -- Shepard Tones and Autocorrelation -- 23.16.Chimes: Pitch without a Partial -- The Hosanna Bell in Freiburg -- Pitch of a Kettle Drum -- 23.17.Repetition Pitch -- Huygens at Chantilly -- Temple of Kukulkan, Chichen Itza -- Ground Reflections -- 23.18.Quantifying Frequency -- Cents -- Just Noticeable Difference (JND) -- Time or Place? -- 23.19.Pitch Class, the Octave Ambiguity, and Perfect Pitch -- 23.20.Parsing and Persistence: Analytic versus Synthetic Hearing -- 23.21.Deutsch's Octave Illusion -- Pitch and Loudness -- 23.22.An Extended Definition of Pitch -- 24.Timbre -- 24.1.Timbre and Phase -- Shape Depends on Phase -- Ohm-Helmholtz Phase Law -- Rationale for Insensitivity to Relative Phase of Harmonic Partials -- 24.2.Amplitude and Timbre Beats -- Generalizing the Concept of Beats --
Contents note continued: 24.3.Waveform Beats and the Phase Law -- 24.4.The Perception of Waveform Beats -- 24.5.A Dramatic Phase Sensitivity -- 24.6.Timbre and Context -- Box 24.1 Helmholtz's and Koenig's Ingenious Tests of the Ohm-Helmholtz Phase Law -- 24.7.Timbre, Loudness, and Shock Waves -- 25.Phantom Tones -- 25.1.Lies and Illusions -- 25.2.Sounds That Aren't There -- Hearing Phantom Tones -- 25.3.How and Where Do Phantom Tones Arise? -- Mechanical Causes -- Neural Causes and the Auditory Cortex -- 25.4.Beat Tones -- Phantom Loudness Beat Tones -- Examples of Beat Tones -- 25.5.Nonlinear Harmonic Generation -- Box 25.1 Experiment in Nonlinear Harmonic Generation -- Box 25.2 Rudolph Koenig -- 26.Dissonance and Temperament -- 26.1.Critical Bands -- Autodissonance -- 26.2.Figuring Dissonance -- 26.3.Helmholtz Theory of Consonance and Dissonance -- Trouble with 7 and 11? -- 26.4.The Impossible Perfection of Pythagoras -- The Perfect Fifth as the Basis for a Musical Scale --
Contents note continued: Another Path to a Musical Scale -- Pythagorean Just Intonation -- 26.5.The Pythagorean Comma -- 26.6.The Circular Musical Scale and the Circle of Fifths -- The Wolf Fifth -- 26.7.The Modern Solution: Equal Temperament -- The Barbershop Seventh---Just versus Equal -- 26.8.Stretched Scales and Partials---Extreme Tests of Dissonance Theory -- 26.9.Downshifting Chopin -- VI.Soundspaces -- 27.Modern Architectural Acoustics -- 27.1.Rooms as Resonant Spaces -- Why Do Surfaces Absorb Sound? -- Coloring Sound with Walls -- 27.2.W.C. Sabine and Architectural Acoustics -- The Right Questions -- Decay of Reverberations -- Box 27.1 Sabine's Experiments -- 27.3.Understanding T60 -- Box 27.2 Deriving the Sabine Reverberation Formula -- Rectangular Rooms and the Law of Similarity -- Strength G -- The Problem of Low Frequencies -- 27.4.Diffusion by Walls -- 27.5.Special Shapes -- Box 27.3 Acoustics of the Mormon Tabernacle -- 27.6.Auditory Scene --
Contents note continued: 27.7.The Precedence Effect -- Electronic Enhancement in Concert Halls -- 27.8.Blind Navigation in Spaces -- 27.9.Frequency Response of Rooms and Concert Halls -- Power Spectrum and Mode Density -- Point-to-point Frequency-dependent Transmission -- 27.10.Reverberation Timeline -- 27.11.Best Hall Acoustics -- 27.12.Acoustical Triumphs and Disasters -- Boston Symphony Hall -- Philharmonic Hall, New York -- Munich Philharmonic -- 28.Sound Outdoors -- 28.1.The Battle of Gaines Farm -- 28.2.Long-range Sound Propagation in the Atmosphere -- Upwind versus Downwind -- 28.3.Scintillating Sound -- 28.4.Echoes -- The Mystery of the Harmonic Echo -- Flaws in Rayleigh's Arguments -- Sir William Henry Bragg Gets into the Act.
Subject Hearing.
Sound -- Transmission -- Measurement.
Psychoacoustics.
ISBN 9780691148595 (hardback : alk. paper)
0691148597 (hardback : alk. paper)