My Library

University LibraryCatalogue

     
Limit search to items available for borrowing or consultation
 
Look for full text

Search Discovery

Search CARM Centre Catalogue

Search Trove

Add record to RefWorks

PRINTED BOOKS
Author McConway, Kevin, 1950-

Title Statistical modelling using GENSTAT / K.J. McConway and M.C. Jones, P.C. Taylor.

Published London : Arnold in association with the Open University ; New York : Oxford University Press, 1999.

Copies

Location Call No. Status
 UniM ERC  519.50285555 MCCO    AVAILABLE
Physical description x, 502 pages : illustrations ; 30 cm
Bibliography Includes bibliographical references and indexes.
Contents 1.1 What methods will this book cover? 2 -- 1.2 Exploring an interesting dataset 4 -- 1.3 A brief outline of the book 11 -- 2 Review of statistical concepts 13 -- 2.1 Normal distribution 13 -- 2.2 Confidence intervals 21 -- 2.3 Hypothesis testing 24 -- 2.4 Chi-squared and F distributions 30 -- 2.5 Bernoulli, binomial and Poisson distributions 32 -- 2.6 Maximum likelihood estimation 36 -- 2.7 Central limit theorem 38 -- 2.8 Categorical and quantitative variables 40 -- 3 Introduction to Genstat 43 -- 3.2 Loading, storing, retrieving and manipulating data 49 -- 3.3 Summaries and graphics 54 -- 3.4 Using the help system 60 -- 3.5 Some useful hints about Genstat 63 -- 4 Linear regression with one explanatory variable 65 -- 4.1 Simple linear regression model 65 -- 4.2 Fitting lines and making inferences 71 -- 4.3 Confidence intervals and prediction 78 -- 4.4 Checking the assumptions 83 -- 4.5 Transformations 87 -- 4.6 Comparing slopes 93 -- 4.7 A look forward 96 -- 4.8 Correlation 97 -- 5 One-way analysis of variance 103 -- 5.1 Regression with a continuous response variable and a categorical explanatory variable 103 -- 5.2 One-way ANOVA: data and model 110 -- 5.3 Testing for equality of means 116 -- 5.4 Checking the model 123 -- 5.5 Differences between treatments 129 -- 5.6 A final example 134 -- 6 Multiple linear regression 137 -- 6.1 Using the model 138 -- 6.2 Choosing explanatory variables 145 -- 6.3 Parallels with the case of one explanatory variable 156 -- 6.4 Using indicator variables I: comparing regression lines 159 -- 6.5 Using indicator variables II: analysis of variance 163 -- 7 Analysis of factorial experiments 169 -- 7.1 Two-way factorial analysis of variance 169 -- 7.2 More than two factors 181 -- 7.3 Using regression 186 -- 7.4 Factorial ANOVA without replication 192 -- 8 Experiments with blocking 197 -- 8.1 Blocking 197 -- 8.2 More complicated blocking 208 -- 8.3 Factorial experiments with incomplete blocks 215 -- 8.4 Designing experiments 222 -- 9 Binary regression 225 -- 9.1 Logistic function 226 -- 9.2 Logistic regression model 232 -- 9.3 Using the logistic regression model 234 -- 9.4 Exercises in logistic regression 241 -- 10 What are generalized linear models? 247 -- 10.1 Poisson regression 247 -- 10.2 Generalized linear model 252 -- 10.3 Inference for GLMs 254 -- 10.4 A short history of GLMs 260 -- 10.5 Some more GLM applications 261 -- 11 Diagnostic checking 273 -- 11.1 Leverage 273 -- 11.2 Cook statistic 278 -- 11.3 Diagnostics for generalized linear models 282 -- 11.4 Recommended use of model diagnostics 291 -- 12 Loglinear models for contingency tables 293 -- 12.1 Two-way contingency tables 294 -- 12.2 Sampling models 297 -- 12.3 Loglinear models in practice 303 -- 12.4 Logistic and loglinear models 313 -- 13 Further data analyses 317 -- 13.1 Agglomeration of alumina 317 -- 13.2 Prostatic cancer 321 -- 13.3 Ground cover and apple trees 324 -- 13.4 Epileptic seizures 328 -- Ordinal responses 335 -- Smoothing: generalized additive models 336 -- Censoring in survival data 338.
Summary This core text is as self-contained course in statistics and covers this general linear model, regression and analysis of variance. The authors review the prerequisite methods and ideas in a concise and clear way and the material is application-oriented, with the software package GENSTAT for Windows integrated into the text. The basics of GENSTAT are introduced, then used in conjunction with a review of simple linear regression, moving on to more sophisticated analyses such as multiple linear regression, analysis of variance, logistic regression and loglinear modelling. The final chapter consists of four data analysis case studies using techniques drawn from the whole of the book.
Other author Jones, M. C. (M. Chris)
Taylor, P. C. (Paul C.)
Subject Genstat (Computer system)
Mathematical statistics -- Data processing.
Linear models (Statistics) -- Data processing.
ISBN 0340759852

chat loading...