My Library

University LibraryCatalogue

     
Limit search to items available for borrowing or consultation
 
Look for full text

Search Discovery

Search CARM Centre Catalogue

Search Trove

Add record to RefWorks

PRINTED BOOKS
Author Friendly, Michael.

Title Discrete data analysis with R : visualization and modeling techniques for categorical and count data / Michael Friendly, York University, Toronto, Canada, David Meyer, UAS Technikum Wien, Vienna, Austria ; with contributions by Achim Zeileis, University of Innsbruck, Innsbruck, Austria.

Published Boca Raton CRC Press, Taylor & Francis Group, 2016.

Copies

Location Call No. Status
 UniM ERC  519.50285 FRIE    AVAILABLE
Physical description xvii, 544 pages : illustrations (some color) ; 26 cm.
Series Chapman & Hall/CRC texts in statistical science series ; 120.
Texts in statistical science ; 120.
Notes "A Chapman & Hall book."
Bibliography Includes bibliographical references and index.
Contents Machine generated contents note: 1.Introduction -- 1.1.Data visualization and categorical data: Overview -- 1.2.What is categorical data? -- 1.2.1.Case form vs. frequency form -- 1.2.2.Frequency data vs. count data -- 1.2.3.Univariate, bivariate, and multivariate data -- 1.2.4.Explanatory vs. response variables -- 1.3.Strategies for categorical data analysis -- 1.3.1.Hypothesis testing approaches -- 1.3.2.Model building approaches -- 1.4.Graphical methods for categorical data -- 1.4.1.Goals and design principles for visual data display -- 1.4.2.Categorical data require different graphical methods -- 1.4.3.Effect ordering and rendering for data display -- 1.4.4.Interactive and dynamic graphics -- 1.4.5.Visualization = Graphing + Fitting + Graphing -- 1.4.6.Data plots, model plots, and data+model plots -- 1.4.7.The 80-20 rule -- 1.5.Chapter summary -- 1.6.Lab exercises -- 2.Working with Categorical Data -- 2.1.Working with R data: vectors, matrices, arrays, and data frames --
Contents note continued: 2.1.1.Vectors -- 2.1.2.Matrices -- 2.1.3.Arrays -- 2.1.4.Data frames -- 2.2.Forms of categorical data: case form, frequency form, and table form -- 2.2.1.Case form -- 2.2.2.Frequency form -- 2.2.3.Table form -- 2.3.Ordered factors and reordered tables -- 2.4.Generating tables: table and xtabs -- 2.4.1.table() -- 2.4.2.xtabs() -- 2.5.Printing tables: structable and ftable -- 2.5.1.Text output -- 2.6.Subsetting data -- 2.6.1.Subsetting tables -- 2.6.2.Subsetting structables -- 2.6.3.Subsetting data frames -- 2.7.Collapsing tables -- 2.7.1.Collapsing over table factors -- 2.7.2.Collapsing table levels -- 2.8.Converting among frequency tables and data frames -- 2.8.1.Table form to frequency form -- 2.8.2.Case form to table form -- 2.8.3.Table form to case form -- 2.8.4.Publishing tables to LATEX or HTML -- 2.9.A complex example: TV viewing data* -- 2.9.1.Creating data frames and arrays -- 2.9.2.Subsetting and collapsing -- 2.10.Lab exercises --
Contents note continued: 3.Fitting and Graphing Discrete Distributions -- 3.1.Introduction to discrete distributions -- 3.1.1.Binomial data -- 3.1.2.Poisson data -- 3.1.3.Type-token distributions -- 3.2.Characteristics of discrete distributions -- 3.2.1.The binomial distribution -- 3.2.2.The Poisson distribution -- 3.2.3.The negative binomial distribution -- 3.2.4.The geometric distribution -- 3.2.5.The logarithmic series distribution -- 3.2.6.Power series family -- 3.3.Fitting discrete distributions -- 3.3.1.R tools for discrete distributions -- 3.3.2.Plots of observed and fitted frequencies -- 3.4.Diagnosing discrete distributions: Ord plots -- 3.5.Poissonness plots and generalized distribution plots -- 3.5.1.Features of the Poissonness plot -- 3.5.2.Plot construction -- 3.5.3.The distplot function -- 3.5.4.Plots for other distributions -- 3.6.Fitting discrete distributions as generalized linear models* -- 3.6.1.Covariates, overdispersion, and excess zeros --
Contents note continued: 3.7.Chapter summary -- 3.8.Lab exercises -- 4.Two-Way Contingency Tables -- 4.1.Introduction -- 4.2.Tests of association for two-way tables -- 4.2.1.Notation and terminology -- 4.2.2.2 by 2 tables: Odds and odds ratios -- 4.2.3.Larger tables: Overall analysis -- 4.2.4.Tests for ordinal variables -- 4.2.5.Sample CMH profiles -- 4.3.Stratified analysis -- 4.3.1.Computing strata-wise statistics -- 4.3.2.Assessing homogeneity of association -- 4.4.Fourfold display for 2 x 2 tables -- 4.4.1.Confidence rings for odds ratio -- 4.4.2.Stratified analysis for 2 x 2 x k tables -- 4.5.Sieve diagrams -- 4.5.1.Two-way tables -- 4.5.2.Larger tables: The strucplot framework -- 4.6.Association plots -- 4.7.Observer agreement -- 4.7.1.Measuring agreement -- 4.7.2.Observer agreement chart -- 4.7.3.Observer bias in agreement -- 4.8.Trilinear plots -- 4.9.Chapter summary -- 4.10.Lab exercises -- 5.Mosaic Displays for n-Way Tables -- 5.1.Introduction -- 5.2.Two-way tables --
Contents note continued: 5.2.1.Shading levels -- 5.2.2.Interpretation and reordering -- 5.3.The strucplot framework -- 5.3.1.Components overview -- 5.3.2.Shading schemes -- 5.4.Three-way and larger tables -- 5.4.1.A primer on loglinear models -- 5.4.2.Fitting models -- 5.5.Model and plot collections -- 5.5.1.Sequential plots and models -- 5.5.2.Causal models -- 5.5.3.Partial association -- 5.6.Mosaic matrices for categorical data -- 5.6.1.Mosaic matrices for pairwise associations -- 5.6.2.Generalized mosaic matrices and pairs plots -- 5.7.3D mosaics -- 5.8.Visualizing the structure of loglinear models -- 5.8.1.Mutual independence -- 5.8.2.Joint independence -- 5.9.Related visualization methods -- 5.9.1.Doubledecker plots -- 5.9.2.Generalized odds ratios* -- 5.10.Chapter summary -- 5.11.Lab exercises -- 6.Correspondence Analysis -- 6.1.Introduction -- 6.2.Simple correspondence analysis -- 6.2.1.Notation and terminology -- 6.2.2.Geometric and statistical properties --
Contents note continued: 6.2.3.R software for correspondence analysis -- 6.2.4.Correspondence analysis and mosaic displays -- 6.3.Multi-way tables: Stacking and other tricks -- 6.3.1.Interactive coding in R -- 6.3.2.Marginal tables and supplementary variables -- 6.4.Multiple correspondence analysis -- 6.4.1.Bivariate MCA -- 6.4.2.The Burt matrix -- 6.4.3.Multivariate MCA -- 6.5.Biplots for contingency tables -- 6.5.1.CA bilinear biplots -- 6.5.2.Biadditive biplots -- 6.6.Chapter summary -- 6.7.Lab exercises -- 7.Logistic Regression Models -- 7.1.Introduction -- 7.2.The logistic regression model -- 7.2.1.Fitting a logistic regression model -- 7.2.2.Model tests for simple logistic regression -- 7.2.3.Plotting a binary response -- 7.2.4.Grouped binomial data -- 7.3.Multiple logistic regression models -- 7.3.1.Conditional plots -- 7.3.2.Full-model plots -- 7.3.3.Effect plots -- 7.4.Case studies -- 7.4.1.Simple models: Group comparisons and effect plots --
Contents note continued: 7.4.2.More complex models: Model selection and visualization -- 7.5.Influence and diagnostic plots -- 7.5.1.Residuals and leverage -- 7.5.2.Influence diagnostics -- 7.5.3.Other diagnostic plots* -- 7.6.Chapter summary -- 7.7.Lab exercises -- 8.Models for Polytomous Responses -- 8.1.Ordinal response -- 8.1.1.Latent variable interpretation -- 8.1.2.Fitting the proportional odds model -- 8.1.3.Testing the proportional odds assumption -- 8.1.4.Graphical assessment of proportional odds -- 8.1.5.Visualizing results for the proportional odds model -- 8.2.Nested dichotomies -- 8.3.Generalized logit model -- 8.4.Chapter summary -- 8.5.Lab exercises -- 9.Loglinear and LogIt Models for Contingency Tables -- 9.1.Introduction -- 9.2.Loglinear models for frequencies -- 9.2.1.Loglinear models as ANOVA models for frequencies -- 9.2.2.Loglinear models for three-way tables -- 9.2.3.Loglinear models as GLMs for frequencies -- 9.3.Fitting and testing loglinear models --
Contents note continued: 9.3.1.Model fitting functions -- 9.3.2.Goodness-of-fit tests -- 9.3.3.Residuals for loglinear models -- 9.3.4.Using loglm() -- 9.3.5.Using glm() -- 9.4.Equivalent logit models -- 9.5.Zero frequencies -- 9.6.Chapter summary -- 9.7.Lab exercises -- 10.Extending Loglinear Models -- 10.1.Models for ordinal variables -- 10.1.1.Loglinear models for ordinal variables -- 10.1.2.Visualizing model structure -- 10.1.3.Log-multiplicative (RC) models -- 10.2.Square tables -- 10.2.1.Quasi-independence, symmetry, quasi-symmetry, and topological models -- 10.2.2.Ordinal square tables -- 10.3.Three-way and higher-dimensional tables -- 10.4.Multivariate responses* -- 10.4.1.Bivariate, binary response models -- 10.4.2.More complex models -- 10.5.Chapter summary -- 10.6.Lab exercises -- 11.Generalized Linear Models for Count Data -- 11.1.Components of generalized linear models -- 11.1.1.Variance functions -- 11.1.2.Hypothesis tests for coefficients --
Contents note continued: 11.1.3.Goodness-of-fit tests -- 11.1.4.Comparing non-nested models -- 11.2.GLMs for count data -- 11.3.Models for overdispersed count data -- 11.3.1.The quasi-Poisson model -- 11.3.2.The negative-binomial model -- 11.3.3.Visualizing the mean[-]variance relation -- 11.3.4.Testing overdispersion -- 11.3.5.Visualizing goodness-of-fit -- 11.4.Models for excess zero counts -- 11.4.1.Zero-inflated models -- 11.4.2.Hurdle models -- 11.4.3.Visualizing zero counts -- 11.5.Case studies -- 11.5.1.Cod parasites -- 11.5.2.Demand for medical care by the elderly -- 11.6.Diagnostic plots for model checking -- 11.6.1.Diagnostic measures and residuals for GLMs -- 11.6.2.Quantile[-]quantile and half-normal plots -- 11.7.Multivariate response GLM models* -- 11.7.1.Analyzing correlations: HE plots -- 11.7.2.Analyzing associations: Odds ratios and fourfold plots -- 11.8.Chapter summary -- 11.9.Lab exercises.
Other author Meyer, David, 1973-
Subject Mathematics -- Data processing.
R (Computer program language)
ISBN 9781498725835
149872583X

chat loading...